

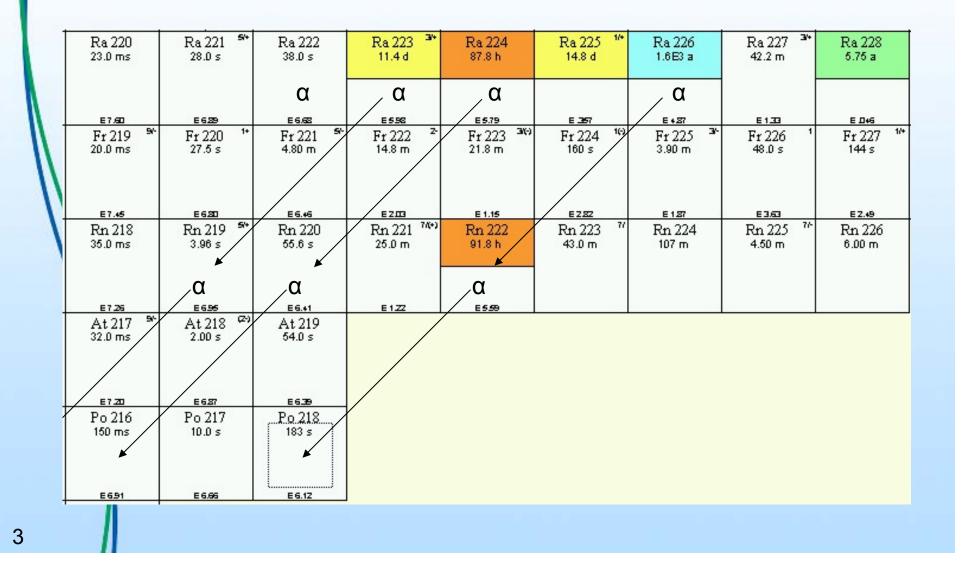
THE LEADER IN ENVIRONMENTAL TESTING

Radium Isotopes by Alpha Spectrometry

Terry Romanko Technical Director TestAmerica St. Louis

Proprietary and Confidential

October 28, 2014


Scope and Application

 Determination of radium isotopes by alpha spectrometry:

- ~ Specfically for ²²⁶Ra
- ~ ²²⁴Ra is possible
- Applicable to liquid or other media where complete dissolution and carrier exchange are readily achievable in the laboratory.

Radium/Radon Isotopes

²²⁶Ra Isotope

- ²²⁶Ra is most common radium isotope
- Member of Uranium (²³⁸U) decay chain, 1600 yr half-life
- Primarily an alpha-emitting isotope:
 - ~ 94.45% @ 4784 keV
 - ~ 5.55% @ 4601 keV
- One gamma-ray of note:
 ~ 3.5% @ 186 keV

²²⁴Ra Isotope

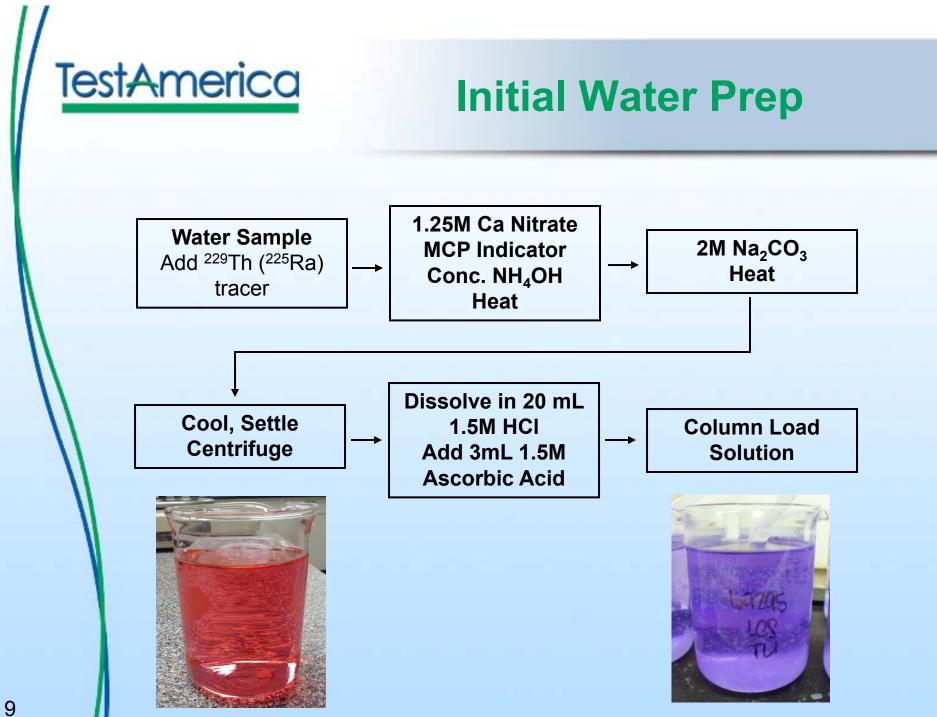
- ²²⁴Ra is first progeny of ²²⁸Th, part of Thorium (²³²Th) decay chain
- Short-lived at 87.8 hours
- Primarily an alpha-emitting isotope:
 - ~ 95.1% @ 5686 keV
 - ~ 4.9% @ 5449 keV
- One gamma-ray of note:
 ~ 3.95% @ 241 keV

Extant Methods

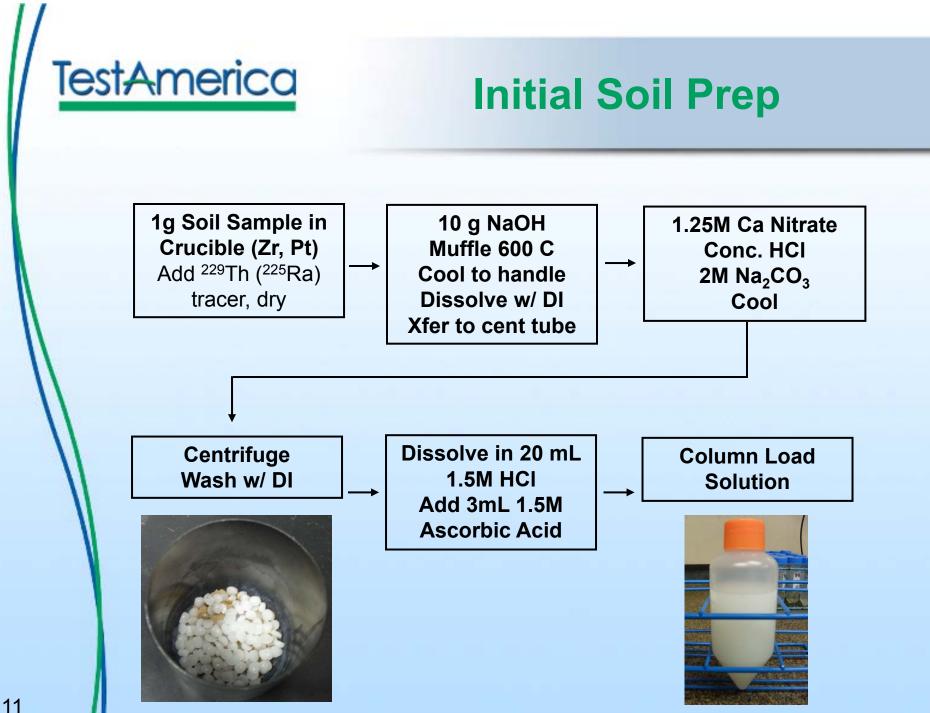
Several methods have been employed:

- ~ EPA 903.0 (SW846 9315, SM 7500 Ra-B, ASTM D2460-90, EPA Ra-03)
- ~ EPA 903.1 (SM 7500 Ra-C, EPA Ra-04, ASTM D3454-91, DOE Ra-05)
- \sim MnO₂ preconcentration
- ~ 3M Empore RAD radium disks
- ~ Ion exchange/extraction chromatographic approaches
- ~ Gamma Spectrometry

New Approach


- Co-precipitation with calcium carbonate
- Radium further purified with cationexchange and extraction chromatography
- Final barium sulfate precipitate; mounted
- Short wait (1-2 days) for ingrowth of ²²⁵Ra daughters through ²¹⁷At
- Count by alpha spectrometry
- ²²⁶Ra specific (also ²²⁴Ra)

Initial Water Prep


- Aliquot of nitric preserved sample
 - ~ Trace: 229Th/225Ra
 - ~ Add MCP indicator
 - ~ 1.25M Calcium Nitrate (~5 mL or less)
 - ~ Ammonium hydroxide to MCP end point
 - ~ Heat to near boiling
 - ~ 2M sodium carbonate (~25 mL), Heat
 - ~ Allow to cool, settle, collect in cent. tube
 - ~ Dissolve with 1.5M HCI (~20 mL total)
 - ~ 1.5M ascorbic acid (~3 mL)

Initial Soil Prep

- 1g of dry/disaggregated soil
 - ~ Place soil in Crucible (Zr, Pt)
 - ~ Trace: 229Th/225Ra
 - ~ Briefly dry on hotplate
 - ~ 10 grams NaOH
 - ~ Muffle at 600 degrees C (30+ minutes), cool
 - Dissolve with DI on hotplate, transfer to 225 mL centrifuge tube, cool to room temp
 - ~ 1.25M Calcium Nitrate (1 mL)
 - ~ Conc. HCI to reduce alkalinity
 - ~ 2M sodium carbonate (~25 mL)
 - ~ Allow to cool, centrifuge, wash w/ DI
 - ~ Dissolve with 1.5M HCI (~20 mL total)
 - ~ 1.5M ascorbic acid (~3 mL)

Separation (Cation)

Cation Column (AG 50W-X8)

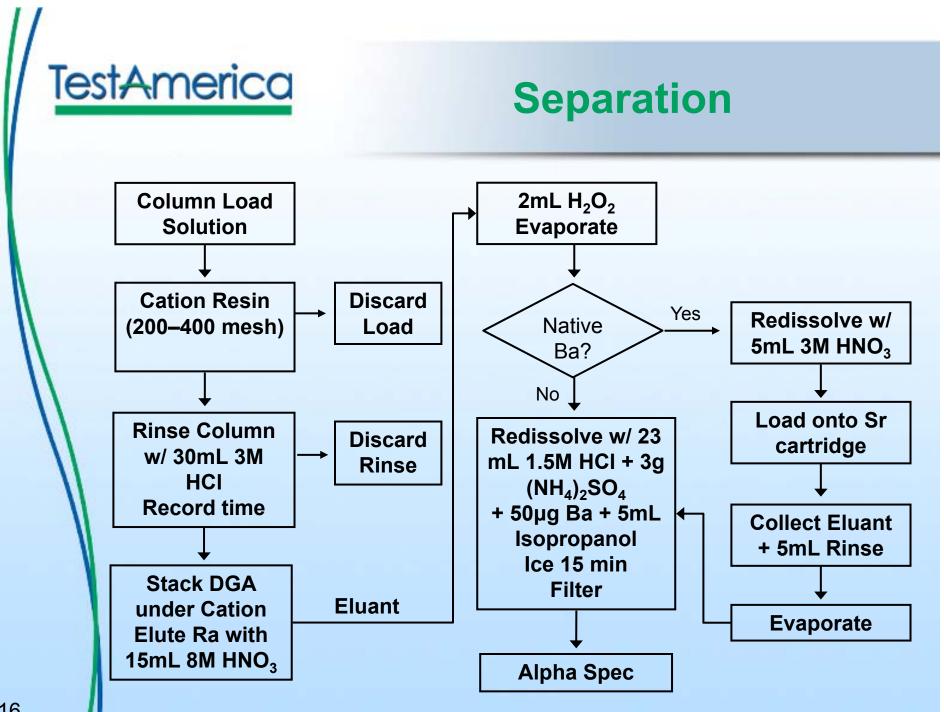

- Condition/Rinse column w/ 1.5M HCI
- Load sample solution, gravity feed
- ~ Rinse w/ 30mL 3M HCI
- Record date/time of end of rinse

Separation (DGA Stack)

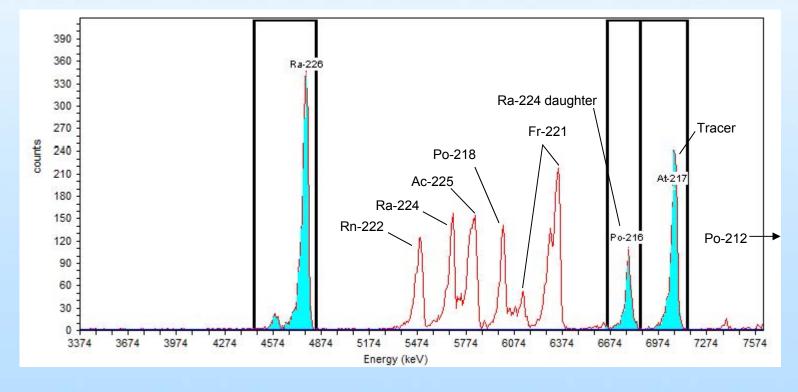
- Stack DGA under Cation Column
 - ~ Condition/Rinse DGA cartridge w/ 8M HNO₃
 - ~ Discard waste, replace with collection tube
 - ~ Stack DGA cartridge under Cation column
 - Elute Ba/Ra with 15 mL 8M HNO₃, 1-2 mL/min
 - ~ 2 mL H_2O_2 , Evaporate to incipient dryness

Separation (Ba removal)

- Sr Cartridge (if Ba expected)
 - ~ Condition cartridge w/ 3M HNO₃
 - ~ Redissolve sample in 5mL 3M HNO₃
 - ~ Load on column, Rinse with 5mL 3M HNO₃
 - ~ Evaporate combined eluant to incipient dryness


Coprecipitation

- Coprecipitation with BaSO₄
 - ~ Redissolve in 1.5M HCI (23 mL)
 - ~ Transfer to tube with 3g $(NH_4)_2SO_4$
 - Add 50µg Ba, Mix
 - ~ Add 5mL Isopropanol, Mix, Cool/Ice
 - Mount on Resolve® filter



Spectrum

- MDC achievable below 0.1 pCi/g, 0.1 pCi/L
- Rapid TAT (as little as ~3 days)
- Spectral confirmation

Tracer Ingrowth Equation

$$A_{2} = \left(A_{2}^{0} * e^{-\lambda_{2}\Delta t}\right) + A_{1}^{0} \left(\frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}}\right) \left(e^{-\lambda_{1}\Delta t} - e^{-\lambda_{2}\Delta t}\right)$$

Where:

- A_2 = activity of the tracer at the midpoint of the count
- A_1^0 = activity of ²²⁵Ra at the separation time
- A_2^0 = activity of ²¹⁷At at the separation time (is zero at the separation time, and thus this whole term goes to zero)
- $\lambda 1 = \text{decay constant for } ^{225}\text{Ra} (0.04652)$
- $\lambda 2 = \text{decay constant for }^{217}\text{At}(0.06931)$
- ∆t = time between the separation and the midpoint of the count

Rocky Flats Soil

²²⁶Ra Results

	Known (pCi/g)		Result (pCi/g)		Recov	Yield
Sample	Activity	TPU (1 σ)	*Activity	TPU (1 σ)	%	%
160-6278-36	1.162	0.052	1.165	0.074	100.2%	75.4%
160-6278-37	1.162	0.052	1.143	0.071	98.4%	69.4%
160-6278-38	1.162	0.052	0.986	0.064	84.8%	99.4%
160-6278-39	1.162	0.052	1.084	0.080	93.3%	79.6%
160-6278-40	1.162	0.052	0.957	0.073	82.3%	93.2%
160-6278-41	1.162	0.052	1.159	0.072	99.7%	82.6%
160-6278-42	1.162	0.052	1.106	0.068	95.1%	78.5%
				Average:	93.4%	82.6%
				StDev:	7.2%	10.4%

*Results corrected for 0.075 pCi/g seen in 7 reps of method blank

MRAD-18 Soil

²²⁶Ra Results

	Known (pCi/g)		Result (pCi/g)		Recov	Yield
Sample	Activity	TPU (1 σ)	*Activity	TPU (1 σ)	%	%
160-6278-22	3.66	0.165	3.824	0.168	104.5%	84.1%
160-6278-23	3.66	0.165	3.597	0.183	98.3%	81.1%
160-6278-24	3.66	0.165	3.858	0.169	105.4%	79.1%
160-6278-25	3.66	0.165	4.142	0.204	113.2%	79.9%
160-6278-26	3.66	0.165	3.510	0.172	95.9%	80.8%
160-6278-27	3.66	0.165	3.609	0.185	98.6%	81.2%
160-6278-28	3.66	0.165	3.669	0.182	100.3%	78.9%
				Average:	102.3%	80.7%
				StDev:	5.9%	1.8%

*Results corrected for 0.075 pCi/g seen in 7 reps of method blank

NRM-4 Soil

²²⁶Ra Results

	Known (pCi/g)		Result (pCi/g)		Recov	Yield
Sample	Activity	TPU (1 σ)	*Activity	TPU (1 σ)	%	%
160-6278-8	12.2	0.549	12.312	0.625	100.9%	74.2%
160-6278-9	12.2	0.549	11.815	0.575	96.8%	76.1%
160-6278-10	12.2	0.549	12.482	0.565	102.3%	71.1%
160-6278-11	12.2	0.549	11.692	0.585	95.8%	77.2%
160-6278-12	12.2	0.549	12.347	0.575	101.2%	74.4%
160-6278-13	12.2	0.549	12.365	0.575	101.3%	74.9%
160-6278-14	12.2	0.549	12.215	0.580	100.1%	73.9%
				Average:	99.8%	74.6%
				StDev:	2.5%	1.9%

*Results corrected for 0.075 pCi/g seen in 7 reps of method blank

Tap Water Samples

²²⁶Ra Results

	0.451 pCi/L		0.901 pCi/L		4.51 pCi/L	
	Recov	Yield	Recov	Yield	Recov	Yield
Repetition	%	%	%	%	%	%
1	84.5%	89.1%	102.2%	76.1%	86.3%	87.9%
2	97.2%	83.8%	96.4%	93.1%	93.6%	83.5%
3	101.5%	84.7%	97.7%	86.4%	97.4%	83.7%
4	90.3%	79.8%	93.7%	80.6%	88.3%	91.0%
5	99.1%	78.5%	99.4%	86.9%	90.2%	82.3%
6	115.4%	77.7%	99.6%	86.2%	100.8%	82.6%
7	96.9%	78.1%	93.9%	74.6%	96.6%	83.9%
Average:	97.8%	81.7%	97.6%	83.4%	93.3%	85.0%
StDev:	9.7%	4.3%	3.1%	6.6%	5.3%	3.2%

*Results corrected for 0.114 pCi/L seen in 7 reps of tap water blank

Summary

- New method for ²²⁶Ra by Alpha Spec
- Tested for Water, Soil rugged
- Demonstrated to be selective for radium
- Should perform well for other matrices (filters, biota, vegetation, brick, etc)
- Respectable spike recoveries
- Good chemical yields
- ²²⁵Ra (²¹⁷At) tracer offers advantage over ¹³³Ba (single AS measurement)
- Ba/Ra sulfate microprecipitation in isopropanol results in excellent peak resolution

Special Thanks

Special thanks to:

- Sherrod Maxwell, Savannah River National Laboratory
- Terry O'Brien, Eichrom Technologies

Both have been more than generous with their time and knowledge!!

Questions/Contact Info

Questions?

- Terry Romanko Radiochemistry Technical Director
 - St. Louis Laboratory
 - terry.romanko@testamericainc.com
 - 314-298-8566