Utilizing combinations of co-precipitation, solvent extraction and chromatography to design efficient analytical and preparative scale separations

Dan McAlister and Phil Horwitz

Eichrom Technologies and PG Research Foundation

Separation Toolbox

(Selective) Dissolution

Precipitation

Solvent Extraction

Chromatography

(Co)Precipitation

Preconcentrat	ion	Mat	rix Removal	Sou	irce	Preparation
AgCl	BaSO4	F	PbSO4	CaCO3		BaCO3
CeF3	Fe(OH)3	(Calcium-Phos	phate		MnO2
Hydrous Titar	nium Oxide	(Ca-oxalate 🤇	BiPO4		

S.L. Maxwell, B.K. Culligan, J.B. Hutchison, R.C. Utsey, D.R. McAlister, "Rapid Determination of Po-210 in Water Samples," *Radioanalytical and Nuclear Chemistry*, in press, (2013) DOI: 10.1007/510967-013-2644-2.

Library.lanl.gov/radiochemistry/elements.html

Complete Recovery of analyte(s)

Compatibility with Matrix

Redissolve?

Compatibility with Separation Methods

Decontamination?

Additional ppt

Solvent Extraction

Chromatography

"Matrix and High Loading Effects on EXC Resins," D.R. McAlister, E.P. Horwitz, Eichrom Workshop at 58th Annual Radiobioassay and Radiochemical Measurements Conference, Fort Collins, CO, October 29 to November 2, 2012.

Chromatography

Ion Exchange

Relatively Cheap Reagents

Moderate Selectivity

Moderate Capacity

Extraction Chromatography

Resins more Expensive

Superior Selectivity

Limited Capacity

Solvent Extraction

Relatively Cheap Reagents

Higher Capacity/Throughput

Stage Efficiency Limited by Entrainment

Third phase, Interfacial CRUD, solvent degradation

LABORATORY MIXER-SETTLERS:

counting

Sample

35g Th Metal (2.3 x 1.0 x 1.3 cm)

Dissolve Th 8M HNO₃ + 0.01M HF Complex Residual F⁻ with Boric acid

Rare Earths?

CONCERN GROWS OVER RARE-EARTHS SUPPLY

Government tries to respond to U.S. vulnerability in these CRITICAL MATERIALS DAVID J. HANSON, C&EN WASHINGTON U.S. PRODUCTION Molycorp plans to restart production from its Mountain Pass, Calif., mine in 2012. It would be the only operating rare-earths mine in the U.S. comprehensive bills focused on energy," says Jeffery A. Green, of J. A. Green & Co., a Washington, D.C., consulting company specializing in the rare-earths problem. "The spectrum runs from just studying

the issues to actually getting out there to rev up production."

Congress is most concerned about the use of rare earths in national security and energy-efficiency technologies. According to the CRS report, DOD estimates the U.S. uses about 5% of the world's production of rare earths for defense purposes. For instance, the agency uses samarium cobalt magnets for disk drive motors on aircraft, tanks, and missile systems; in lasers for mine detection and various countermeasures; and in satellite communications and radar aboard ships and submarines. SmCo magnets are seen as ideal for such defense purposes because they retain their magnetic strength at elevated temperatures.

Gareth P. Hatch, founding principal of

Production

Production

World Mine Production and Reserves (2009 Data)					
Country	Production (Metric Ton)	Reserves (Metric Ton)			
United States	insignificant	13,000,000			
Australia	insignificant	5,400,000			
Brazil	650	48,000			
China	120,000	36,000,000			
Commonwealth of Independent States	not available	19,000,000			
India	2,700	3,100,000			
Malaysia	380	30,000			
Other countries	not available	22,000,000			
World total (rounded)	124,000	99,000,000			

http://geology.com/articles/rare-earth-elements/

Metal	\$/kg	Uses
La	15	Batteries (10 kg La in a Prius)
Ce	15	Catalytic Converter, Polishing
Pr	105	Alloys, Arc Lights, Welding Glasses
Nd	98	Magnets, Lasers
Sm	40	
Eu	4000	JUE Critical
Gd	210	
Tb	2100	Materials for
Dy	1100	
Но	1000	Claap Eporgy
Er	275	Liean Energy
Tm	4600-13000	LASEIS, FUILANE ARAY SUULLES
Yb	1090	Atomic Clocks, Stress Gauges
Lu	10000	Few (Catalyst)
Y	6 8	Phosphors, Synthetic Garnets
Sc	15000	Alloys, Lamps, Dental Lasers
Au	45000	

US DOE Critical Materials Strategy, December 2011.

REUSE STATS Global postconsumer recycling rates for many metals show lots of room for improvement.

Bastnäsite

(Ce, La)CO₃F (Y, Ce)CO₃F

Table 2.3 Rare earth element distribution in bastnasite (w.r.t. 100% REO)

Rare earth	Bastnasite, Mountain Pass, California, U.S.	Bastnasite, Bayan Obo, Nei Monggol, China
La	33.2000	23.0000
Ce	49.1000	50.0000
Pr	4.3400	6.2000
Nd	12.0000	18.5000
Sm	0.7890	0,8000
Eu	0.1180	0.2000
Gd	0.1660	0.7000
Ть	0.0159	0.1000
Dy	0.0312	0.1000
Ho	0.0051	trace
Er	0.0035	trace
Tm	0.0009	trace
Yb	0.0006	trace
Lu	0.0001	trace
Y	0.0913	0.5000

Monozite

monazite-<u>Ce</u> (Ce, La, Pr, Nd, Th, Y)PO₄ monazite-<u>Nd</u> (Nd, La, Ce, Pr)PO₄ monazite-<u>La</u> (La, Ce, Nd, Pr)PO₄ monazite-<u>Sm</u> (Sm, Gd, Ce, Th)PO₄

Table 2.4	Rare earth distribution in monazite from different locations
-----------	--

Rare carth	Australia, North Staradbroke Island, Queensland	Australia, Capel, Western Australia	Brazil, East coast	China, Nangang, Guang- dong	India	U.S., Green Cove Springs, Florida	U.S., Bear Valley, Idabo	Australia, Mount Weld
La	21.50	23,90	24.00	23.35	23.00	17.50	26.23	26.00
Ce	45.8	46.02	47.00	42.70	46.00	43.70	46.14	51.00
Pr	5.3	5.04	4.50	4.10	5.50	5.00	6.02	4.00
Nd	18.6	17.38	18.50	17.00	20.00	17.50	16.98	15.00
Sm	3.1	2,53	3.00	3.00	4.0	4.90	2.01	1.8
Eu	0.8	0.05	0.0550	0.10		0.16	1.54	0.4
Gđ	1.8	1.49	1.00	2.03		6.60	0.77	1.0
ТЪ	0.29	0.04	0.1	0.70		0.26		0.1
Dy	0.64	0.69	0.35	0.80		0.90	Tb,Dy:0.31	0.2
Ho	0.12	0.05	0.035	0.12		0.11		0.1
Er	0.18	0.21	0.07	0.30		0.04		0.2
Tm	0.03	0.01	0.005	trace		0.03		trace
Yb	0.11	0.12	0.02	2.40		0.21		0.1
Lu	0.01	0.04		0.14		0.03	Ho-Lu:0.15	trace
Y.	2.50	2.41	1.4	2.40	Eu-Y: 1.50	3.20	1.39	trace

Figure 3.9 Simplified flowsheet for the recovery of bastnasite at the Molycorp plant (Aplan 1988).

Figure 3.15 Chemical processing of bastnasite.

Lu/Yb Separation on LN2 Resin, 50°C, 5 mg Yb

Displacement Chromatography

FIGURE 9

Typical Elution Diagram for Separation Using Displacement Development with DTPA in System Shown in Figure 8. Reprinted with permission from J. T. Lowe, W. H. Hale, Jr., and D. F. Hallman, Ind. Eng. Chem., Process Design Develop., <u>10</u>, 131 (1971). Copyright by the American Chemical Society.

FIGURE 8. Flow Diagram for Displacement Development Separation of Actinides on the 100-g Scale. Reprinted with permission from J. T. Lowe, W. H. Hale, Jr., and D. F. Hallman, Ind. Eng. Chem., Process Design Develop., <u>10</u>, 131 (1971). Copyright by the American Chemical Society.

Application of EXC to Large Scale Separations

Limitation

High cost of resins

Consequence(s)

High Value Products

Resin Stability

Analytical Applications

Application of EXC to Large Scale Separations

Limitation

Low Capacity

Consequence(s)

High Value Products

Scavenge trace elements from large stream

Add value to existing stream

Enable better analytical results

Sc Separations (analysis)

