

### Extraction Chromatography; A Presentation of New Resin Characterization Data and Applications

Lawrence Jassin 2008 Winter Conference on Plasma Spectrochemistry Temecula, California, January 10, 2008



### Outline

- Sample Preparation Objectives
- Introduction to Extraction Chromatography
- Three (3) Case Studies
  - Separation of Lead from Iron and Steel (AAS)
  - Beryllium (ICP-AES)
  - Hafnium/Lutetium (MC-ICP-MS)

# Sample Preparation Objectives

- Dilute, Shoot and ask questions later?
  - Sample pre-concentration
  - Removal of spectral or isobaric interferences
    - Isotopic and polyatomic
  - Meet required detection limits and data quality objectives
  - Reduce contamination of spectroscopy equipment
  - Reduce maintenance of spectroscopy equipment
     expertise. commitment. results.

#### eichrom US EPA Method 7000A ATOMIC ABSORPTION METHODS

3.1.3 The presence of high dissolved solids in the sample may result in an interference from nonatomic absorbance such as light scattering...

Preferably, samples containing high solids should be extracted.

## eichrom Actinides by ICP-MS: Polyatomic ions The issues

<sup>230</sup>ThH and <sup>231</sup>Pa <sup>236</sup>UH and <sup>237</sup>Np <sup>237</sup>NpH and <sup>238</sup>U <sup>238</sup>UH and <sup>239</sup>Pu <sup>240</sup>PuH and <sup>241</sup>Am <sup>242</sup>PuH and <sup>243</sup>Am



<sup>236</sup>U and <sup>236</sup>Np
 <sup>238</sup>U and <sup>238</sup>Pu
 <sup>241</sup>Pu and <sup>241</sup>Am
 <sup>242</sup>Pu and <sup>242</sup>Am





#### THINK IT OVER....



### **Extraction Chromatography**



#### **Solvent Extraction**



#### Column Chromatography



#### **Extraction Chromatographic Resin**

Surface of Porous Bead



Inert support =

#### Macroporous Acrylic Resin

Example Stationary Phases = Crown Ether, methanediphosponic acid, phosphinic acid, diglycolomide



# Make the call...

- On-line Preconcentration and Determination of Lead in Iron and Steel by Flow Injection-Flame Atomic Absorption
  - Tarsuya Seki\*, Hiroyuki Takigawa\*\*, Yoshihiro Hirano\*\*, Yoichi Ishibashi\*\*\* and Koichi Oguma\*\*
  - \*Nisan Chemical Industries
  - \*\*Chiba University
  - \*\*\*Kohkankeisoku Corp.



#### Pb Resin

-

4, 4', 5' di-t-butylcyclohexano 18-



|         | Percent of Element Found in FCV Number |       |       |       |       |       |            |
|---------|----------------------------------------|-------|-------|-------|-------|-------|------------|
|         |                                        |       | 0.1 M | HNO3  |       |       | 0.1 M AOXb |
| Element | 1-10                                   | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70      |
| Li      | 100                                    |       |       |       |       |       |            |
| Na      | 96                                     | <1    | <1    | 1     | <1    | <1    | <1         |
| K       | 100                                    |       |       |       |       |       |            |
| Rb      | 100                                    |       |       |       |       |       |            |
| Cs      | 100                                    | -     | -     |       | -     | -     | -          |
| Mg      | 100                                    |       |       | -     | -     | -     | -          |
| Ca      | 100                                    | -     | -     | -     | -     | -     | -          |
| Sr      | 100                                    | -     | -     | -     |       | -     | -          |
| Ba      | 100                                    |       | -     | -     | -     | -     | -          |
| Al      | 100                                    | -     | -     | -     | -     | -     | -          |
| Cr      | 100                                    | -     | -     |       | -     | -     | Ξ.         |
| Mn      | 100                                    | -     | -     | -     |       | ×     | -          |
| Fe      | 100                                    | -     |       | -     | -     | -     | -          |
| Co      | 100                                    | -     |       | -     | -     | -     | -          |
| Ni      | 100                                    | -     |       | 7     | -     | -     | -          |
| Cu      | 100                                    | ~     | -     |       |       | -     | -          |
| Zn      | 100                                    | -     | -     | -     | -     | -     | -          |
| Y       | 100                                    | -     | -     | -     | -     | -     | ~          |
| Zr      | 100                                    | -     | -     | -     | -     | -     |            |
| Mo      | 100                                    | -     | -     | -     | ~     | ~     | -          |
| Ru      | 100                                    |       | *     | -     | -     | -     |            |
| Rh      | 100                                    | -     | -     | -     | -     | -     | -          |
| Pd      | 58                                     | -     | 24    | 18    | -     | -     | -          |
| Ag      | 100                                    |       | ×     |       | -     |       | *          |
| Cd      | 100                                    | ÷     | -     | ÷     |       | -     |            |
| La-Eu   | 100                                    | -     | -     | -     | -     | -     |            |
|         |                                        |       |       |       |       |       |            |

<sup>a</sup> Column parameters: Particle size = 50-100 µm; bed volume = 1.0 mL.; height = 2.5 cm; 1 FCV = 0.66 mL.; Load solution volume = 0.60 mL.; Load solution contained 0.1 M b AOX = ammonium oxalate oxalic acid to solubilize zirconium.

#### Elution Behavior of Various Elements on the Lead-Selective Resin<sup>a</sup>

b





#### eichrom Lead impurity in iron and steel

| Fe(III)     | <b>Pb</b> ( <b>II</b> ) | Pb(II)   |
|-------------|-------------------------|----------|
| added/mg    | added/µg                | found/µg |
| 10, 100, or | 0                       | < 0.02   |
| 1000        |                         |          |
| 10          | 1.00                    | 1.01     |
| 10          | 1.00                    | 1.01     |
| 100         | 1.00                    | 1.04     |
| 100         | 1.00                    | 1.01     |
| 1000        | 1.00                    | 1.01     |
| 1000        | 1.00                    | 1.01     |

- 5. Elute the Pb with 12 mL of 0.1 M ammonium oxalate solution at 4 ml/min in reverse flow direction
- 6. Direct measurement by AAS

- 1. Acid digestion of iron or steel sample
- 2. Bring up in 30 ml 1 N Nitric acid
- 3. Load on 7.5 mm i.d. X 100 mm Pb Resin column (flow injection)
- 4. 6 mL of 1 N Nitric Rinse at 3 mL/min

| Sample size/g     | Pb found/µg        | Pb content                    | Ref. Value |
|-------------------|--------------------|-------------------------------|------------|
| Pure iron (certij | fied reference m   | naterial JSS001-4)            |            |
| 0.7137            | 0.142              | 0.20ppm                       |            |
| 1.039             | 0.20               | 0.19                          |            |
| 0.8839            | 0.174              | 0.20                          |            |
| 0.7991            | 0.142              | 0.18                          |            |
| 0.7006            | 0.136              | 0.19                          |            |
| 0.9673            | 0.182              | 0.19                          |            |
|                   | Mean:              | $\boldsymbol{0.19 \pm 0.008}$ | 0.2 ppm    |
| Lead-free cuttin  | eg steel (certifie | d reference materia           | l JSS519)  |
| 0.1363            | 130                | 0.0954%                       |            |
| 0.1303            | 125                | 0.0959                        |            |
| 0.1727            | 163                | 0.0944                        |            |
|                   | Mean:              | $0.0952 \pm 0.0008$           | 0.097%     |



#### Potential Issues with Current Beryllium Method

#### Interfering elements in the AES spectrum of Beryllium

| Table 1. Potential Spectral Interferences for Be determination by ICP-AES <sup>a</sup> |           |           |                 |           |           |
|----------------------------------------------------------------------------------------|-----------|-----------|-----------------|-----------|-----------|
| Analyte                                                                                | Peak (nm) | Intensity | Analyte         | Peak (nm) | Intensity |
| Cr                                                                                     | 312.870   | 15.0      | Nb              | 313.079   | 2200.0    |
| U                                                                                      | 312.879   | 6.0       | Ti              | 313.080   | 6.0       |
| Zr                                                                                     | 312.918   | 400.0     | Ce              | 313.087   | 65.0      |
| Nb                                                                                     | 312.964   | 22.0      | Th              | 313.107   | 27.0      |
| U                                                                                      | 312.973   | 15.0      | Be <sup>b</sup> | 313.107   | 41000.0   |
| Zr                                                                                     | 312.976   | 550.0     | Tm              | 313.126   | 2300.0    |
| Th                                                                                     | 312.997   | 10.0      | U               | 313.132   | 8.0       |
| V                                                                                      | 313.027   | 1020.0    | Hf              | 313.181   | 20.0      |
| OH                                                                                     | 313.028   | 0.0       | U               | 313.199   | 15.0      |
| Ce                                                                                     | 313.033   | 50.0      | Cr              | 313.206   | 1000.0    |
| Be <sup>b</sup>                                                                        | 313.042   | 64000.0   | Zr              | 313.207   | 7.0       |
| U                                                                                      | 313.056   | 6.0       | Th              | 313.226   | 5.0       |
| OH                                                                                     | 313.057   | 0.0       | Mo              | 313.259   | 1800.0    |
| U                                                                                      | 313.073   | 0.0       | Ce              | 313.259   | 30.0      |

<sup>a</sup>As listed in Varian Plasma96 software version 1.12

<sup>b</sup>Commonly used peaks for beryllium determination by ICP-AES

Beryllium lines very intense → method is very sensitive for the determination of beryllium

Interfering lines from other elements could lead to false positives.

Spectral shift dependant on unknown uranium enrichment

# One Step Beryllium Clean Up

- LN3 Resin (H[TMPP])
  - Retains > 98% U
    (100 ppm) while passing
    Be directly from 10%
    nitric/ 6% sulfuric acid filter digestate
  - One step method/ pass sample through the 2 mL LN3 cartridge and analyze the eluent
  - LN3 retains Mo, Nb and Zr
  - V passes through with the Be



### eichrom Dipex® Extractant

#### bis(2-ethylhexyl) methanediphosphonic



![](_page_16_Picture_0.jpeg)

#### Elution of Be and Selected Elements on Dipex Resin

![](_page_16_Figure_2.jpeg)

#### eichrom Beryllium Separation Method

- Digest sample in any acid
- Adjust pH to 2 w/ sodium acetate
- Add 10 mL 0.3 M oxalic acid
- Load on Beryllium Resin cartridge
- Rinse with 20 mL 0.1 M nitric acid
- Strip with 20 mL 4 M nitric acid strip

# eichrom Vacuum System with Beryllium cartridges and 10 ml Reservoirs

![](_page_18_Picture_1.jpeg)

# eichrom Matrix Challenge- Y-12 Oak Ridge TN

- 1. Standard 1: 0.001 ppm Be plus 80 ppm V
- Standard 2: Column Interference Standard containing 0.001ppm Be plus (all in ppm) 400 Cr, 800 Fe, 100 Mo, 100 Nb, 2 Sc, 100 Th, 100 Ti, 100 U, 80 V, 100 Y and 100 Zr.

![](_page_20_Picture_0.jpeg)

### Y-12 Results using ICP-OES

|            | Be (ppm)<br>ICP-OES+<br>Cartridge | Recovery | Recovery w/o<br>column |
|------------|-----------------------------------|----------|------------------------|
| Standard 1 | 0.00099                           | 99.9%    | 2010%                  |
| Standard 2 | 0.000678                          | 67.8%    | 4160%                  |

All metals except Cr, V and Y reduced to non-detect. V reduced to 0.08 ppm, Y reduced to 0.24 ppm and Cr reduced to 20.5 ppm.

![](_page_21_Picture_0.jpeg)

### **Hf-Lu Separation**

![](_page_21_Figure_2.jpeg)

Lu-176 half life 37 billion years Alternative chronometer to the Sm-Nd system.

Advantage of greater variation of parent daughter ratio

Availability of MC-ICP-MS allows better measurement of Hf than with TIMS

![](_page_22_Figure_0.jpeg)

#### DGA Resin, 50-100µ Rare Earth Elements including Lutetium

![](_page_23_Figure_2.jpeg)

![](_page_24_Figure_1.jpeg)

2.0 mL column of DGA, normal, 9.5 cm height x 0.5 cm diameter 22(1)°C, 2 mL/min

![](_page_25_Figure_2.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_27_Picture_0.jpeg)

#### Conclusions

- Extraction Chromatography is offers a convenient format to perform sample preparation according to desired objectives
- Substantial literature references available for applications and characterization data
- Applicable to any analytical instrumentation, new or old

![](_page_28_Picture_0.jpeg)

#### References

[1] E. P. Horwitz, W.H. Delphin, C.A.A. Bloomquist and G.F. Vandergrift, *J. of Chromatography*, **125**, 203 (1976)

[2] E.P. Horwitz, M.L. Dietz, S. Rhoads, C. Felinto, N.H. Gale and J.

Houghton, Analitica Chimica Acta, 292, 263 (1994)

[3] T. Seki, et al., *Analytical Sciences*, **16**, 513 (2000)

[4] E. P. Horwitz and D. R. McAlister, *Solvent Ext. Ion Exchange*, **23(5)**, 611 (2005)

[5] D. R. McAlister and E. P. Horwitz, *Talanta*, **67(5)**, 873, (2005)

[6] Connelly, J.N., *Geochemistry Geophysics Geosystems*, **7**, Q04005, (2006)

[7] Connelly, J.N., *Chemical Geology*, **233, Issues 1-2**, 126-136 (2006)

[8] E. P. Horwitz, D. R. McAlister, A. H. Bond and R. E. Barrans,

Jr., Solvent Extr. Ion Exchange, 23, 319 (2005)