

Recent Improvements in Column Extraction Methods at SRS

Sherrod L. Maxwell Washington Savannah River Co. 53rd Radiobioassay and Radiochemical Measurements Conference Eichrom Workshop

October 30, 2007

New Developments

- New Sr-89/90 in milk method
 - Is there an alternative to drying/furnacing or cation exchange collection?
- Developing new actinides and Sr-90 in fecal method
 - Can our soil matrix removal method help with fecal samples?

Sr-89/90 in Milk

- Routinely measured in environmental monitoring samples from locations near SRS
- Sr-90 from fallout consumed by cows and gets into human diet
 - Classical method-dry, furnace, slow
 - Newer-cation resin affinity, pH adjustment, long contact times, elute Sr from resin with large volume of acid
 - Complex precipitations or Sr Resin to separate Sr
- Important for emergency response
 - Chernobyl accident

Need for Faster Method

- Previous SRS method
 - Cation exchange collection of Sr-89/90 from milk
 - Requires large volume of 8M HNO3 (350 ml) to elute Sr from resin (30 grams) and long processing/evaporation times
- Long, tedious method
 - 4 days before column work begun
- Could we use calcium phosphate precipitation instead?

- 500 ml aliquot
- Add 2 mL 1.25M Ca (NO₃) $_2$ and 5 mL (NH₄) $_2$ HPO₄
 - Ca added so water blanks will precipitate (not really needed for milk)
- Add phenolphthalein indicator
- Add NH₄OH to dark pink
- Centrifuge
- What happens?

- What could we do?
- Add 25 mL of 3M HNO₃ into each tube
- What happens?
- Ca₃(PO₄) ₂ dissolves
- Fat coagulates

- Centrifuge
- Transfer supernate to beaker
- Rinse solids with 10-15 ml 3M HNO₃
- Transfer supernate to beaker
- Evaporate beaker to dryness

- Wet ash
 - 15 ml concentrated HNO_3 and 5 ml 30 wt% $\rm H_2O_2$
- Heat beakers in a furnace
 - at 550C for 30-60 minutes to turn the solids white
- Wet ash
 - 15 ml concentrated HNO₃ and 5 ml 30 wt% H_2O_2

500 ml milk

Add Ca, PO4, NH₄OH

$Ca_3 (PO_4)_2$ and fat

Add 3M HNO3

Most fat is removed

Centrifuge

Heat on hot plate

Heat to dryness

Heated at 550C 30 min.

Column Load Solution

Sr-89/90 in Milk Column Extraction

- Redissolve in 10 ml 8M HNO₃-1M Al(NO₃) 3
 - Or for actinides also, 3M HNO3 HNO₃-1M Al(NO₃) ₃
- Perform typical Sr Resin
 Separation using 3 ml Sr
 resin (2 ml +1 ml cartridges)

New SRS Method for Milk

Sr-90 Added (pCi)	Carrier Recovery (%)	Sr-90 Measured (pCi)	Recovery (%)
76.28	67.3%	74.23	97.3 %
76.28	78.4%	80.86	106 %
76.28	87.4%	71.56	93.8 %
Avg	77.7%	75.55	99.0 %

SRS Fecal Method

- Current method drying, furnacing, wet ashing, dissolution in HCL-HFand HCL-boric acid
- Load to Diphonix Resin
- Strip actinides with HEDPA
- Destroy HEDPA with Fenton's reagent (Fe + H_2O_2)
- Use TEVA+TRU Resin
- Long method, plus Np-237 has to track well with Pu-236 tracer across two resins: Diphonix Resin and TEVA Resin

New SRS Fecal method

- New approach being tested
- Use cerium fluoride matrix removal we use with soil
- Benefits
 - simpler, faster, better Np-237 results
- Instead of adding HCL-HF to Diphonix, add 5 mg Ce, TiCl₃ and HF, ice 5 min.
- Centrifuge

New Approach

- Redissolve precipitate in 3M nitric acid-1M aluminum nitrate
- Use TEVA+TRU+DGA Resins
- Perform TEVA-SCN separation to remove Ce as we do in SRS soil method
- What about Sr-90?
 - one lab performs calcium phosphate precipitation of the supernate after a LaF₃ matrix removal step
- Can we get the Sr-90 to follow the actinides?

Can we add anything to make the Sr precipitate?

- What would precipitate with Ce as a fluoride and maybe enhance Sr precipitation?
- Calcium!

Fecal Sample Preparation

- After drying, furnacing, wet-ashing, fecal samples are dissolved in two fractions
 - HCL-HF fraction and a HCL-boric acid fraction
 - Typically~100 ml HC-HF and 25 ml HCI-boric acid fractions
 - Aliquots taken/reserve held
- Transfer the aliquot from the HCL-boric acid fraction into a glass 100 ml beaker
 - heat to dryness on a hot plate.
- Remove the beakers from the hot plate and add 7 ml of 6M HNO3
 - Warm to dissolve on the hotplate and set aside for use later.
- Transfer the aliquot of the HCL-HF sample fraction into a 50 ml centrifuge tube for CeF3

Cerium Fluoride Matrix Removal

- Pipet 1 mL of 5 mg Ce/mL to each HCL-HF tube.
- Pipet 1 mL of 1.25 M calcium nitrate (50 mg Ca) to each HCL-HF tube.
- Pipet 2 mL of 20 wt% TiCl3 into each tube.
- Pipet 5 mL of concentrated HF into each tube.
- Cap and mix.
- Place tubes to sit in an ice bath for 5 to10 minutes.
- Centrifuge for 10 minutes at 3500 rpm or as needed.

Cerium Fluoride Matrix Removal

- Discard supernate liquid to waste.
- Transfer the dissolved boric acid fraction into each tube containing the cerium fluoride precipitate.
- Pipet 7 ml of 2M aluminum nitrate into each beaker.
- Transfer this beaker rinse to the tube containing the dissolved precipitate
- Now we have 14 ml 3M HNO3-1M AL(NO3)3 load solution

Actinide Column Separation

Rinse DGA Resin to remove any Sr

- Work with DGA only
- Pipet 6 mL of 0.1M HNO3 directly into each DGA column
- Pipet 5 mL of concentrated nitric acid into each tube.
- Cap, mix, and set tubes aside for addition to TRU Resin (if any U present on DGA).

Stack TRU + DGA Resin

- Place TRU cartridges above each DGA cartridge.
- Pipet 15 mL of 4M HCl into each column to strip any Am from the TRU Resin onto the DGA resin
- Set aside TRU cartridges to process later for U.
- Add 10 mL of 0.25M HCI directly into each DGA column to elute Am/Cm.

Am/RE Removal on TEVA

 Evaporate 0.25M HCl with 5mL con. HNO3, 50 uL of 1.8M H2SO4, then ash with nitric acid and hydrogen peroxide
 Redissolve in 5 mL of 4M NH₄SCN, warm gently.

TRU Resin-U Removal

- Add 0.1M HNO3 + concentrated HNO3 rinse from DGA (for possible U)
 - Remove tube with possible Sr / add to evaporated load solution
 - If no U, could add 0.1M HNO3 rinse directly to evaporated load like we do in animal tissue method (still being tested for fecal samples)
- Rinse TRU with 12 ml 4M HCL-0.2M HF
 - Any residual Th removal
- Elute U from TRU with 15 ml 0.1M ammonium bioxalate
 - Cerium fluoride precipitation/alpha spectrometry

Initial Fecal Test Data-Actinides

		Pu-236	U-232	U-232	Am-243	Am-243
		% Rec.	% Rec.	Corr.	% Rec.	Corr.
1-ORNL		97.60	110.16	95.96	102.5	89.7
2-ORNL		103.5	115.77	101.57	81.05	68.25
3-ORNL		108	121.69	107.49	111.1	98.3
4-ORNL		110.1	124.72	110.52	108.9	96.1
5-HCL-HF		116.8	104.63	N/A	108	95.2
	avg.	107.20	115.39	103.89	102.26	89.46
C	% rsd	6.7	7.1	6.2	12.0	13.7

*Samples were tested that had already been analyzed using reserve aliquots ORNL samples already spiked with lower level U-232 and Am 243- subtracted

Initial Fecal Test Data-Sr

	Sr Carrier % Rec	Sr-90 Added (pCi)	Sr-90 Meas (pCi)	Sr-90 % Rec
1-HCL-HF + Ce	16	80	N/A	N/A
2-HCL-HF + Ca	63.3	80	81.8	102.25
3-SMP + Ca + Ce	74.4	80	76.3	95.38
4-HCL-HF + Ca + Ce	89.4	80	80.4	100.50

Alpha Spectra: Pu-236 and Np-237

Summary

- New rapid method for Sr in milk developed at SRS
 - Faster
 - Utilizes calcium phosphate precipitation
- New actinides and Sr in fecal method being developed
 - Faster, simpler than Diphonix Method
 - Higher tracer rcoveries
 - More consistent Np-237 behavior
 - Recovers Sr with actinides