

New Method for Removal of Spectral Interferences for Be Assay

Sherrod L. Maxwell Washington Savannah River Co. 53rd Radiobioassay and Radiochemical Measurements Conference Eichrom Workshop

October 30, 2007

Requirements

- DOE Chronic Beryllium Disease (CBD) prevention program in 1999 (10CFR Part 850)
 - to protect DOE workers from Be-contaminated dust
- Requires frequent monitoring of air and possible contaminated surfaces to identify potential health risks
- Samples (filters and smears) are digested and analyzed
 - inductively coupled plasma atomic emission spectrometry (ICP-AES) or alternate method (molecular fluorescence/ ICP-MS).

Spectral Interferences

- Other elements can interfere spectrally with the beryllium measurement by ICP-AES.
- Interference correction software is used at the ICP-AES
 - but at higher levels the spectral interferences cannot be handled adequately
- A rapid separation method to remove spectral interferences is needed
 - to allow accurate measurement of Be at low levels using ICP-AES to meet requirements

Current Separation Methods

- PG Research Foundation developed a Be separation method for Eichrom using Be Resin[®] to remove spectral interferences
 - E. Philip Horwitz et al, "A Method For The Separation Of Beryllium From Spectral Interfering Elements In Inductively-Coupled Plasma-Atomic Emission Spectroscopic Analysis," Talanta, Vol. 67, 873 (2005)
- One or more guard columns may be needed prior to Be Resin to remove large amounts of interferences
 - this method can be affected by large amounts of interferences that can reduce Be retention on the resin

Current Separation Methods

- Fluoride, if present, must be complexed with boric acid to prevent Be losses using the Be Resin method.
 - An adjustment of each sample to pH >1 using an indicator is also required
- DOE Y-12 facility uses a pass through approach using LN-3 Resin to remove spectral interferences
 - bis (2,4,4-trimethylpentyl) phosphinic acid extractant

Current Separation Methods

 LN-3 Resin will retain U, Nb and Mo under the conditions used (dilute sulfuric-nitric acid mixture) while allowing Be to pass through.

– Vanadium, however, is not retained using this method.

If vanadium is present, Be Resin method can be used after LN-3 resin to remove V

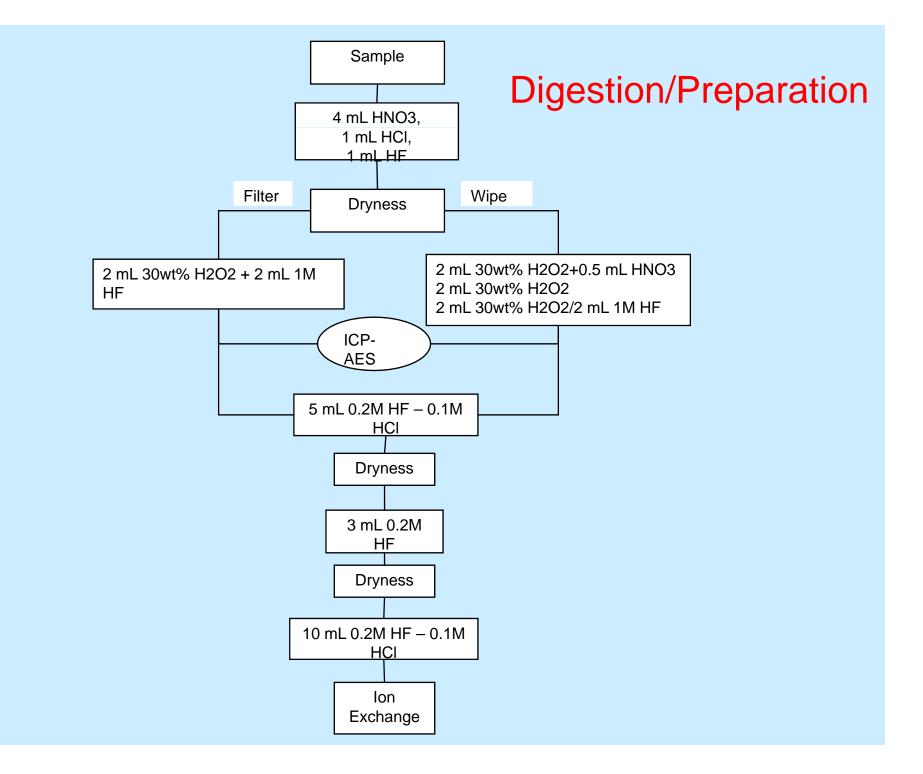
New SRS Method

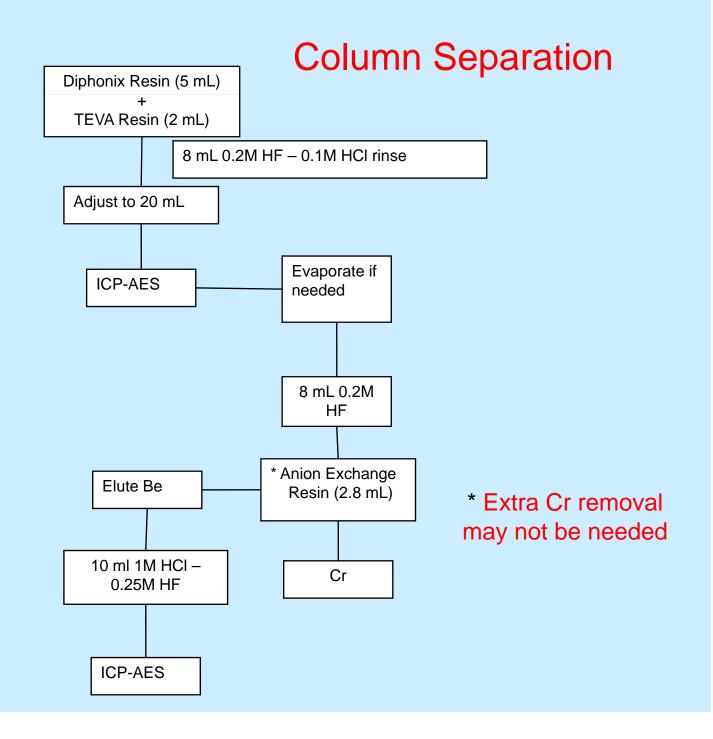
- New SRS method uses stacked column (5 ml of Diphonix Resin and 2 ml of TEVA Resin)
 - Single column pass-through approach for Be
 - Reduces the levels of the spectral interferences significantly
 - Removes uranium (U), thorium (Th), niobium (Nb), vanadium (V), molybdenum (Mo), zirconium (Zr), tungsten (W), iron (Fe), chromium (Cr), cerium (Ce), erbium (Er) and titanium (Ti)

Why this way?

- Separate interferences without multiple guard columns
 - Pass-through approach has less risk of Be loss
- Utilizes fluoride complexing
 - SRS digestion already uses HF
- Cation/Anion exchange using HF well-documented
 - Diphonix is powerful resin even with HF
 - SRS fecal method
 - TEVA cartridge can be conveniently attached to Diphonix column

References


- J.P. Faris, "Adsorption of the Elements from Hydrofluoric Acid by Anion Exchange", Analytical Chemistry, Vol.32, 520 (1960)
- L. Danielson, "Adsorption of a Number of Elements from HNO3-HF and H2SO4-HF Solutions by Cation and Anion Exchange", Acta Chemica Scandinavia, Vol. 19, 5 (1965)
- K.A Kraus et al, "Anion- exchange studies. XVII. Molydenum (VI), Tungsten (VI) and Uranium (VI) in HCL and HCI-HF Solutions", Journal of Am. Chem. Soc., Vol.77, 3972, (1955)
- K.A Kraus et al, "Absorbability of a Number of Elements in HCI-HF Solutions", Journal of Am. Chem. Soc., Vol. 82, 339, (1960)


Blend of Old and New

- Diphonix Resin
 - Much higher retention than typical cation resin with sulfonic acid groups
 - Diphonix Resin has a very high retention for U, Th, V, Fe, Er and Ce even in dilute HF
 - Relatively inexpensive (<\$7 for 5 ml resin)
- TEVA Resin
 - Efficient anion exchanger (Aliquat 336 extractant)
 - retains Nb, Ti, Mo, Zr, and W from dilute hydrofluoric acidhydrochloric acid solutions

Additional Cr Removal

- An optional anion resin column separation can also be used to remove additional chromium if needed.
 - Anion Resin (2.8 ml) 100-200 mesh chloride form
 - Dilute HF
 - Will also lower other interferences (Zr, Nb, W, Ti, Mo) as well
- Not required if Cr is low or if 234.861 nm line can be used

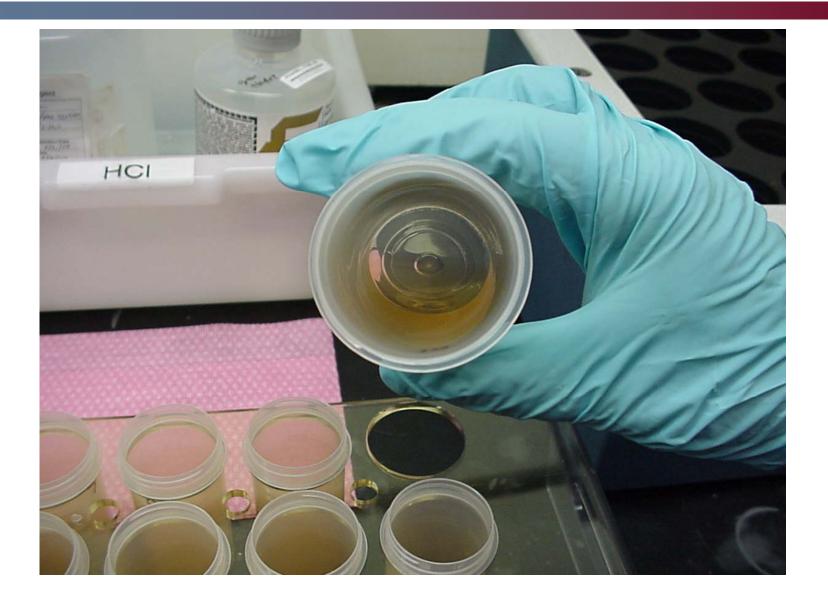
Spectral Interference Removal

Interference	Added	Measured	Removal
	(ppm)	(ppm)	(%)
Iron**	1000	0.039	99.996
Uranium	300	0.112	99.963
Niobium	100	ND	~100
Molybdenum	100	0.002	99.998
Vanadium	100	0.003	99.997
Zirconium	100	0.082	99.918
Tungsten	100	0.010	99.990
Thorium	50	ND	~100
Titanium	100	0.736	99.964
Cerium	50	ND	~100
Erbium	100	ND	~100
Chromium	100	50.01	49.99
Chromium*	100	8.98	91.02

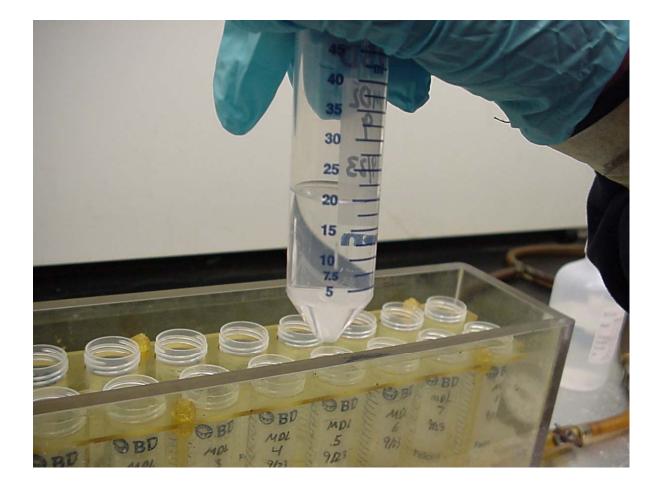
n=10; ppm added to have this level interference in 20 ml at ICP-AES

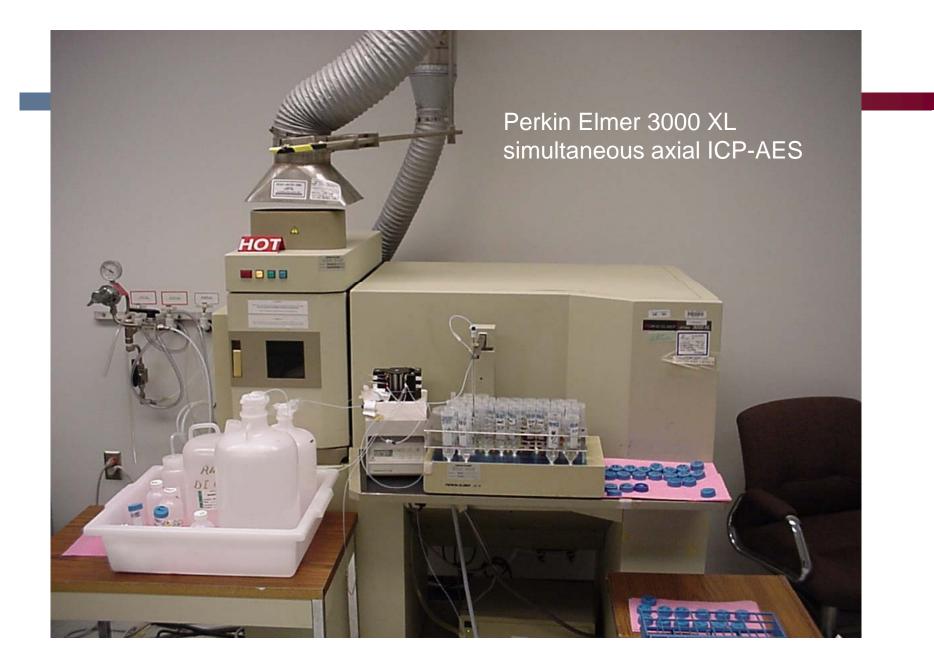
*additional anion exchange to remove more Cr

**Fe has similar removal at 2500 ppm


Hot Block Digestion

Hot Block Digestion


Digested Filter



Diphonix Resin+ TEVA

Ready for ICP-AES

Be Test Results- 234.861 nm line

Sample	Be (Ref)	Be Measured	Recovery	Bias	
	(ppb)	after IEX (ppb)	(%)	(%)	
		(234.861 nm)			
wipe	1	1.128	112.8	12.8	
wipe	1	1.151	115.1	15.1	
wipe	1	1.10	110.0	10.0	
wipe	1	1.08	108.0	8.0	
wipe	1	1.096	109.6	9.6	
wipe	1	1.14	114.0	14.0	
Be filter	5	4.916	98.3	-1.68	
Be filter	5	4.926	98.5	-1.48	
BeO filter	25	22.8	91.2	-8.8	
BeO filter	25	21.6	86.4	-13.6	
		Avg.	104.394	4.394	

Be Test Results- 313.042 nm line

	Be	Be Measured	Recovery	Bias	
	(ppb)	after IEX (ppb)	(%)	(%)	
		313.042 nm			
wipe	1	1.41	141.0	41.0	
wipe	1	1.23	123.0	23.0	
wipe	1	1.47	147.0	47.0	
wipe	1	1.76	176.0	76.0	
wipe	1	1.57	157.0	57.0	
wipe	1	1.72	172.0	72.0	
Be filter	5	4.88	97.6	-2.4	
Be filter	5	5.4	108.0	8.0	
BeO filter	25	22.42	89.7	-10.3	
BeO filter	25	21.25	85	-15.0	
		Avg.	129.628	29.6	

After Anion IEX (Cr)-Be 313.042 nm line

		Be			
		Added	After Anion	Rec	Bias
		(ppb)	exchange	(%)	(%)
			313.042 nm		
1	wipe	1	1.01	101	1
2	wipe	1	1.13	113	13
3	wipe	1	0.95	95	-5
4	wipe	1	0.94	94	-6
5	wipe	1	0.98	98	-2
6	wipe	1	0.98	98	-2
7	Be filter	5	4.84	96.8	-3.2
8	Be filter	5	4.74	94.8	-5.2
9	BeO filter	25	22.75	91	-9
10	BeO filter	25	21.07	84.28	-15.72
			Avg	96.59	-3.41

Be Test Results- 313.107 nm line

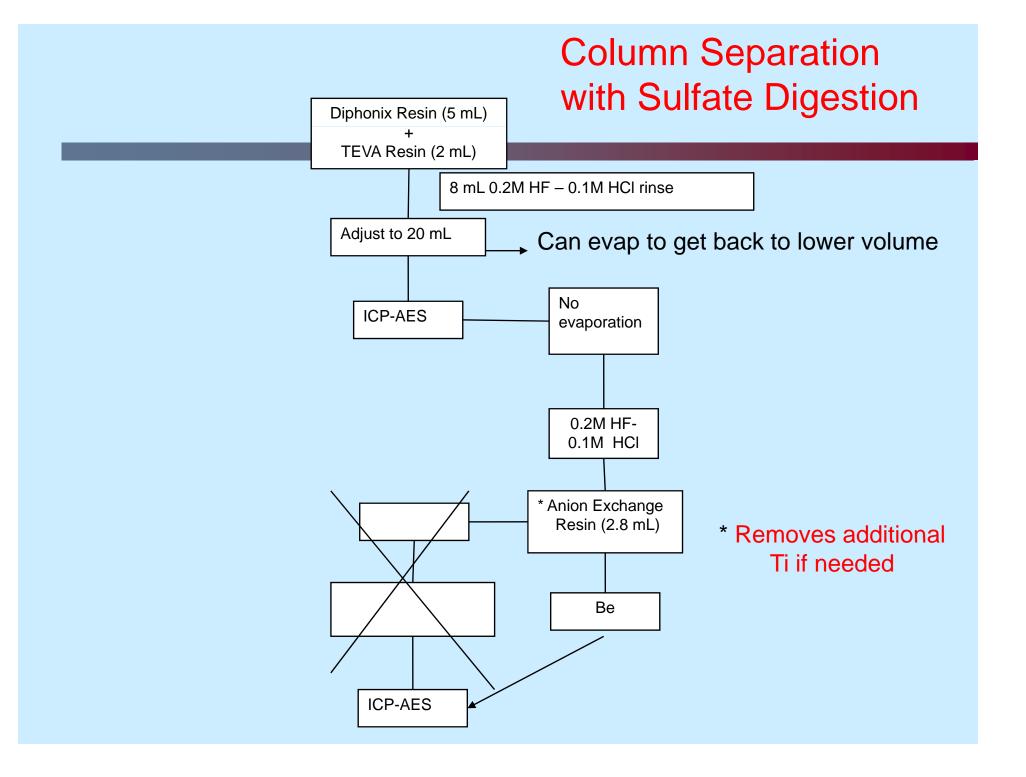
	Be (Ref) (ppb)	Be Measured after IEX (ppb)	Recovery (%)	Bias (%)
		313.107 nm		
wipe	1	1.77	177.0	77.0
wipe	1	1.23	123.0	23.0
wipe	1	1.74	174.0	74.0
wipe	1	1.76	176.0	76.0
wipe	1	1.79	179.0	79.0
wipe	1	1.83	183.0	83.0
Be filter	5	4.89	97.8	-2.2
Be filter	5	5.44	108.8	8.8
BeO filter	25	22.62	90.48	-9.5
BeO filter	25	21.36	85.44	-14.6
		Avg.	139.45	39.45

After Anion IEX (Cr)- Be 313.107 nm line

	Be Added	After Anion	Recovery	Bias
	(ppb)	exchange	(%)	(%)
	313.107 nm			
wipe	1	1.314	131.4	31.4
wipe	1	1.289	128.9	28.9
wipe	1	1.14	114	14
wipe	1	1.18	118	18
wipe	1	1.19	119	19
wipe	1	1.15	115	15
Be filter	5	5.02	100.4	0.4
Be filter	5	5.04	100.8	0.8
BeO filter	25	22.7	90.8	-9.2
BeO filter	25	21.1	84.4	-15.6
		Avg	110.27	10.27

Be Test Results- 234.861 nm line

Sample	Be (Ref)	Be Measured	Recovery	Bias	
	(ppb)	after IEX (ppb)	(%)	(%)	
		(234.861 nm)			
wipe	1	1.16	116.00	16.0	
wipe	1	1.12	112.00	12.0	
wipe	1	1.02	102.00	2.0	
wipe	1	1.03	103.00	3.0	
wipe	1	0.92	92.00	-8.0	
wipe	1	0.93	93.00	-7.0	
Be filter	5	4.80	96.00	-4.0	
Be filter	5	4.90	98.00	-2.0	
Be filter	5	4.50	90.00	-10.0	
Be filter	5	4.49	89.80	-10.2	
		Avg.	99.18	-0.82	
		% rsd	9.16		


Method Report Limit

	Be 234.861	Be 313.042	Be 313.107
1	1.086	1.043	0.978
2	1.082	1.053	1.017
3	1.113	1.005	0.947
4	1.178	1.114	1.064
5	1.133	1.102	1.056
6	1.099	1.101	1.004
7	1.128	1.114	1.052
8	1.136	1.099	1.041
9	1.102	1.123	1.035
10	1.164	1.073	1.031
AVERAGE	1.122	1.083	1.022
STD DEV	0.0318	0.0384	0.0368
%Recovery/Bias	112.206	108.272	102.233
Report Limit [ug/filter]	0.009	0.011	0.010

Other digestion methods

- Will it work with H₂SO₄ digestion?
- Yes!
 - Less retention of Ti on Diphonix-TEVA (~75% removed at 100 ppm level instead of 99%+) - sulfate effect
 - Everything else removed but Cr is still partial
 - Anion resin method can be modified to remove rest of Ti, but not Cr due to sulfate interference on Be retention
 - Simply pass 0.2M HF-0.1M HCl through 2.8 ml anion resin/no rinsing to remove additional Ti, etc.

Spectral Interference Removal-Sulfate Digestion

Interference	Added	Measured	Removal
	(ppm)	(ppm)	(%)
			(70)
Iron	1000	0.021	99.998
Uranium	100	0.262	99.74
Niobium	100	ND	~100
Molybdenum	100	0.027	99.973
Vanadium	100	ND	~100
Zirconium	100	3.795	96.205
Zirconium*	100	ND	~100
Tungsten	100	0.0.006	99.994
Thorium	50	ND	~100
Titanium	100	13.86	86.14
Titanium*	100	0.030	99.97
Cerium	50	ND	~100
Chromium	100	69.18	30.82

n=4; ppm added to have this level interference in 20 ml at ICP-AES *additional anion exchange

Summary

- New rapid ion exchange method to remove spectral interferences developed at SRS
 - Simple, single* pass with excellent removal of interferences
 - Good accuracy and precision
 - Less expensive than LN-3 + Be Resin
- Can be used with other digestion methods
- Makes low level Be work by ICP-AES more feasible even with high levels of impurities
- May have application to "protect" ICP-MS from high levels of impurities (that may also be analytes)

* if 234 nm line used or low Cr

Acknowledgements

- Chemists
 - Maureen Bernard, Linda Youmans, Matthew Nelson
- Lab Technicians
 - Phil Baker, Roslyn Cooke