

Welcome to the Family, Introducing our 2nd Resolve[®] Filter

Eichrom Technologies LLC

Terry O'Brien & Larry Jassin

October 28, 2008

Filters for Radiochemistry

- 2004-Resolve Filters introduced with FWHM specification to address industry concerns
- Air monitoring equipment becoming more sophisticated
- Eichrom looks into applying lessons learned from original alpha spec filter to air monitoring application

Selection Criteria for Air Monitoring Filters

Item	Issue	Characteristic
1	Quality spectra	 Low self background Good resolution for alpha emitters Collection of contamination on Surface (reduce self-adsorption)
2	Easy to Handle	Negligible curling and durable

Filter Material – Quality Control Goals

Resolve PTFE Filters 3 µm, PTFE Laminate 47mm Diameter

Polytetrafluoroethylene (PTFE) material With a laminated stiff polymeric backing

Properties	
Diameter	47 mm
Reference Pore Size	3.0 μ nominal
Thickness	0.15 –0. 4 mm thick
DOP Efficiency	>99.99 % 0.3 um @5.33 cm/sec
Chemical Compatibility	Resistant to most chemicals and solvents
Air Permeability	6 ft ³ /ft ² /min @ 0.5" H2O minimum

Filter Backgrounds Via Gas Flow proportional counting

	α - alpha Background MDA=2.24 (dpm)	β - beta Background MDA=4.20 (dpm)	
Cellulose	0.78 ± 1.12	0.17 ± 1.30	
Glass Fiber	2.00 ± 1.56	4.52 ± 3.44	
Resolve PTFE Filter	0.24 ± 0.70	0.31 ± 3.54	

Alpha Spec Filter Evaporated Spike Peak Resolution-Contamination Simulation

	Material Pore Size	FWHM ²³³ U	FWHM ²⁴¹ Am
Drop Evaporation			
Laminated PTFE	3.0 μ	28.1	75.2
Laminated PTFE	3.0 μ	26.9	86.0
Laminated PTFE	3.0 μ	22.8	93.1
Stainless Steel Planchet		52.5	48.6

Establishing QC criteria? Determining Filter Spectra Resolution Evaporated Drop: ²³³U +²⁴¹Am

Determining Filter Spectra Resolution CeF₃ micropreciptation: ²³³U +²⁴¹Am

Alpha Spectroscopy Filter CeF₃ Microprecipitation Spike Peak Resolution

	Material Pore Size	FWHM ²³³ U	FWHM ²⁴¹ Am
Drop Evaporation			
Laminated PTFE	3.0 μ	25.9	84.8
SS Planchet		52.5	48.6
CeF ₃ Precipitation			
Polypropylene	0.1 μ	35.1	33.8
Laminated PTFE	3.0 μ	46.7	40.4

Alpha U+Am Spike Recovery on Gasless alpha beta counter Part 1: Initial Spike Recovery of filter material (3 replicates)

Filter type	Alpha spike (dpm)	Compensated Alpha before air sampling (dpm)	% Recovery
Cellulose	474	106 ± 3.4	22 %
Glass	474	237 ± 5.1	50 %
Resolve PFTE	474	415 +6.9	88 %

Spiked U+Am Alpha Comparison Part 2: Post-Air Sampling Spike Recovery (3 replicates)

Filter type	Alpha spike (dpm)	Measured before air sampling Alpha (dpm)	Initial % Recovery	Measured Alpha (dpm) after air sampling	% Recovery
Cellulose	474	106 ± 3.4	22 %	35.9 ± 20.2	8 %
Glass	474	237 ± 5.1	50 %	225 ± 18.8	47 %
Resolve PFTE	474	415 +6.9	88 %	397.8 ± 14.2	84 %

Spiked Cellulose filter Pre Air Sampling

Spiked Cellulose filter Post Air Sampling

Spiked Glass Fiber Filter Pre Air Sampling

Spiked Glass Fiber Filter Post Air Sampling

Spiked Resolve PTFE Filter Pre Air Sampling

Spiked Resolve PTFE Filter Post Air Sampling – 1st 10 min

Spiked Resolve PTFE Filter Post Air Sampling – 2nd 10 min

expertise. collaboration. results.

Spiked Resolve PTFE Filter Post Air Sampling – 3rd 10 min

expertise. collaboration. results.

Spiked Resolve PTFE Filter Post Air Sampling – 4th 10 min

expertise. collaboration. results.

Resolve PTFE Filters... Bringing High Definition to your Air Filter Spectra and Results

Conclusion

- Resolve PTFE Filter
 3.0 μ PTFE Laminate
 47mm dia. (50 to a package)
- Quality Control Specification:
 - Background < MDA for $\alpha \& \beta$
 - Resolution verified <60 KeV FWHM
 - Minimal curling <2.5 mm deflection
- The filters have a easy to determine orientation: "Grid side down, Opposite Air flow"
- Performance demonstrated at Eichrom and externally
 - Lee Reagan of Canberra,
 - Peter Olsen of Washington Closure Hanford

Acknowledgements

Eichrom	
Larry Jassin	Lee Reagan-Canberra
Mike Fern	Shelia Webb
Jill Bryant	Bill Cross
Joel Williamson	Anil Thakkar-Argonne
Sarah Pifer	Pete Olsen-Hanford