

Rapid Method for Determination of Radiostrontium in Emergency Milk Samples

Sherrod L. Maxwell Savannah River Nuclear Solutions Aiken, SC October 29, 2008

54th Radiobioassay and Radiochemical Measurements Conference

Destin, Florida

Background

- Increasing need to develop faster analytical methods for emergency response
 - including rapid determination of radiostrontium in milk
- Milk ingestion
 - Important pathway for radiostrontium intake into the human body
 - Accumulates in bone
 - 100 Bq /L Sr-90 generic emergency action level (IAEA)
- Need for rapid method
 - Notification of dairy farms
 - Limits radiostrontium consumption

Need for faster methods

- Classical method (Harley) of drying, furnacing, separations tedious and time-consuming
- Cation exchange + extraction chromatography (Tait 1997)
 - bicyclic polyether cryptand such as cryptand 222
 - long contact times / 24 hour method
- Microwave small volume + Sr Resin (Tovedal 2008)
 - Measure Y-90
 - 24 hours
 - LLD 50 Bq/L
- Can we analyze in less than 24 hours?

New Method

- New rapid separation method for radiostrontium in emergency milk samples - SRS Environmental lab
- Flexible with sample aliquot
 - 100 ml aliquot yields 0.5 Bq/L LLD
 - 12 samples in 8 hours
 - Much less than 100 Bq/L Sr-90 emergency action level

Maxwell III, SL and Culligan, B.K., "Rapid Method for Determination of Radiostrontium in Emergency Milk Samples", Journal of Radioanalytical and Nuclear Chemistry, in press

Method Details

- Calcium phosphate precipitation
- Nitric acid dissolution of the precipitate
 - coagulates residual fat/proteins
- Strontium separation
 - Sr Resin with vacuum-assisted flow rates
- Gas proportional counting
 - Could apply Cerenkov option for Sr-89/ Sr-90

FlowChart of New Radiostrontium Emergency Method

- 100 ml milk aliquot
- Add 50 ml water to facilitate separation
- Add 2 mL 1.25M Ca (NO₃) $_2$ and 5 mL (NH₄) $_2$ HPO₄
- Add phenolphthalein indicator
- Add NH₄OH to dark pink
- Centrifuge 10 minutes

- Add 20 mL of 3M HNO₃ into each tube
- Ca₃(PO₄) ₂ dissolves
- Fat/protein coagulate
- Centrifuge
- Transfer supernatant to beaker
- Rinse solids with 10-15 ml 3M HNO₃
- Transfer supernatant to beaker
- Evaporate beaker to dryness

- Wet ash
 - 15 ml concentrated HNO₃ and 5 ml 30 wt% H_2O_2
- Heat beakers in a furnace
 - at 550C for 30-60 minutes to turn the solids white
- Wet ash
 - 10-15 ml concentrated HNO₃ and 5 ml 30 wt% H_2O_2
- Redissolve in 10 ml 8 M HNO3 -1M Al(NO₃)₃

500 ml sample ppt. shown

$Ca_3 (PO_4)_2$ and fat/protein

Add 3M HNO3

Most fat/protein is removed

Centrifuge

Heat on hot plate

Heat to dryness

Heated at 550C 30 min.

Column Load Solution

Gravity Vs Vacuum Flow Rates

Sr-89/90 in Milk Column Extraction

- Redissolve in 10 ml 8M HNO₃-1M Al(NO₃) 3
- Perform typical Sr Resin
 Separation using 3 ml Sr resin
 - (2 ml +1 ml cartridges)
- Rinses:
 - 15 mL of 8M HNO3
 - 5 ml 3M HNO3-0.05M oxalic acid
 - 7 ml 8M HNO3
- Sr Elution: 13 ml 0.05M HNO3

Performance of New Radiostrontium Method - 20 minute Count

⁹⁰ Sr Added	⁹⁰ Sr Measured	Uncertainty	Difference
(Bq/L)	(Bq/L)	(%, K=2)	(%)
0	0.26	8.9	N/A
0	0.34	81.9	N/A
2.86*	2.66	24.1	-7.0
2.86*	3.96	24.7	+38
2.86*	3.31	20.2	+15.7
2.86*	2.67	18.7	-6.6
5.70	6.11	16.7	+7.2
5.70	5.71	13.1	+0.2
5.70	5.16	13.9	-9.5
14.3	12.8	9.1	-11
14.3	15.2	8.5	+6.3
14.3	14.1	8.6	-1.4
	water standard	Average	+3.19

* Added using NRIP water standard

Performance of New Radiostrontium Method - 60 minute Count

⁹⁰ Sr Added	⁹⁰ Sr Measured	Uncertainty	Difference
(Bq/L)	(Bq/L)	(%, K=2)	(%)
0	0.11	130	N/A
0	0.27	59	N/A
2.86*	3.09	13.2	+8.0
2.86*	3.11	16.7	+8.7
2.86*	2.67	13.6	-6.6
2.86*	2.67	11.3	-6.6
5.70	5.85	10.4	+2.6
5.70	5.75	8.3	+0.9
5.70	6.04	8.2	+5.9
14.3	13.6	6.1	-4.9
14.3	14.0	6.1	-2.1
14.3	14.2	6.1	-0.7

* Added using NRIP water standard

Average +0.52

Summary

- New rapid emergency method for Sr in milk developed at SRS
- Faster than cation exchange collection
 - 12 samples in 8 hours
- Calcium phosphate precipitation and nitric acid dissolution to coagulate proteins/fats
- LLD 0.5 Bq/L for 100 ml aliquot counted 20 minutes
- Can also be used for larger aliquot routine environmental monitoring

