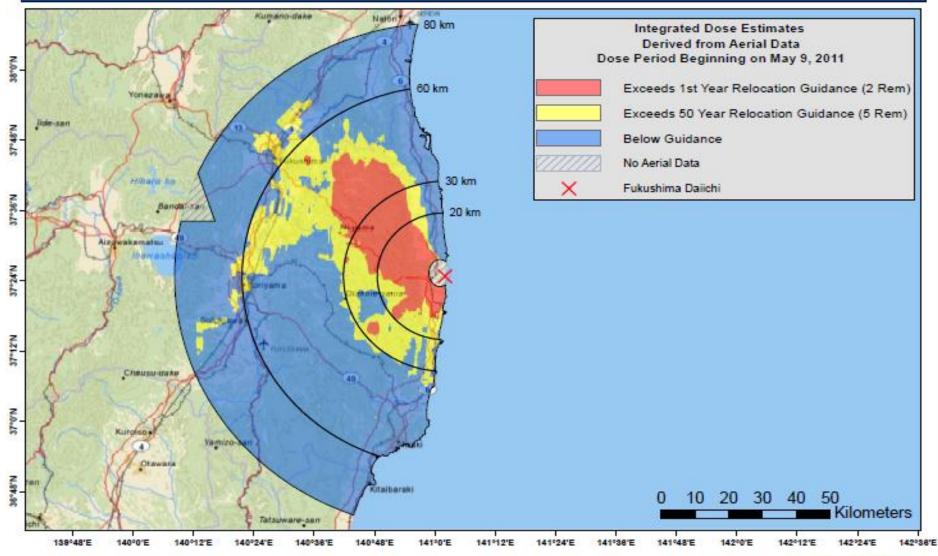


Welcome to the Eichrom Workshop on Emergency Response Methods-Actinides, Sr and Ra-226

Who can name where Larry Is?

# A lot happens between MARC Conferences


Summer 2010, Olkiluoto-3, Finland



### Aerial Measuring Results

### Joint US/Japan Survey Data

#### FUKUSHIMA DAIICHI JAPAN



Map oreated on 5/07/11 07:21:00 JST

UNCLASSIFIED

# Preparedness and Emergency Response

- Eichrom and the Basics of Extraction Chromatography
- First Wave Response
- Approaches to alpha and beta Emergency Response Measurements
  - FDA
  - CDC
  - EPA

# **Outline Continued**

- S. L. Maxwell Publications- Actinides/Sr
  - Air Filters
  - Soil
  - Concrete/Brick
  - Food/ Vegetation

1940

1950

1960

1970

1980

1990

2000

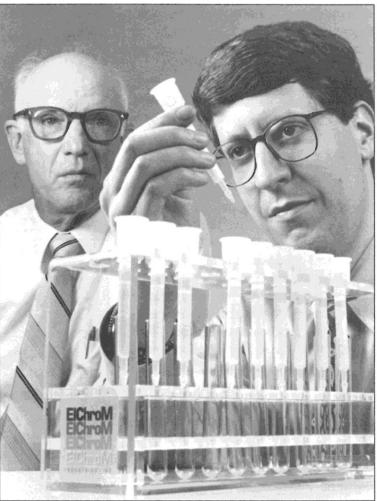
### Federal lab consortium awards

## **Researchers honored for tech transfer efforts**

Four Argonne researchers have been honored for their accomplishments in commercializing discoveries made through federally funded research.

E. Philip Horwitz (CHM), Mark Dietz (CHM), Richard W. Siegel (MSD) and Kevin Myles (CMT) received awards from the Federal Laboratory Consortium. The consortium is made up of representatives from federal laboratories, industry, academia, and state and local governments.

Horwitz and Dietz were honored for their development


E. Philip Horwitz (CHM), Mark Dietz (CHM), Richard W. Siegel (MSD) and Kevin Myles (CMT) received awards commercializing discoveries made through federally funded research.

of a series of new chemical resins capable of selectively removing certain radioactive materials from radioactive waste, and biological and environmental samples.

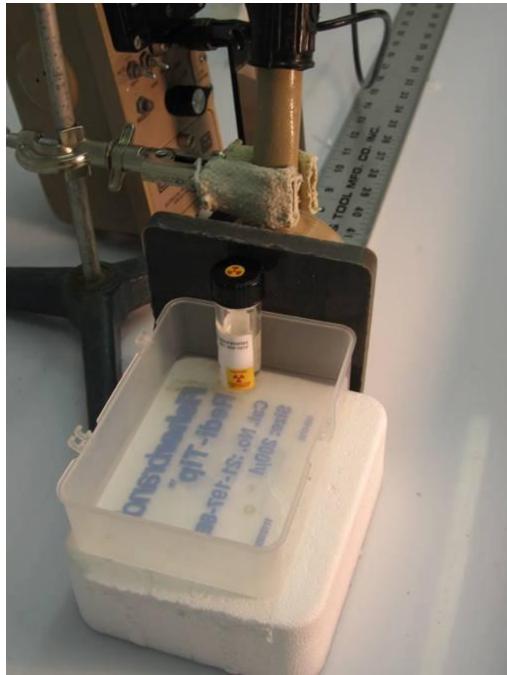
The process developed by Horwitz and Dietz is less complex than previous methods, leading to an estimated cost savings of \$300-\$400 per sample, and results in much smaller volumes of waste.

A senior chemist at Argonne, Horwitz received the the U.S. Department of Energy's Distinguished Associate Award in 1990 for developing the TRUEX (transuranium extraction) process, a scientific and technical breakthrough which greatly reduces the volume of radioactive wastes requiring deep burial.

Horwitz is chief scientific consultant for EIChroM



ENVIRONMENTAL AID — E. Philip Horwitz (CHM), left, and David M. Einolf of EIChroM Industries inspect a chemical resin that can help clean up radioactive wastes. EIChroM manufactures and markets the new resins, which are based on research by Horwitz and Mark Dietz (CHM).


2010

# Eichrom / NPO

Founded in 1990

## 2008 Eichrom Technologies acquired Nuclear Power Outfitters

 2009 Eichrom moved entire company into one facility in Lisle, IL just ~30 miles of downtown Chicago



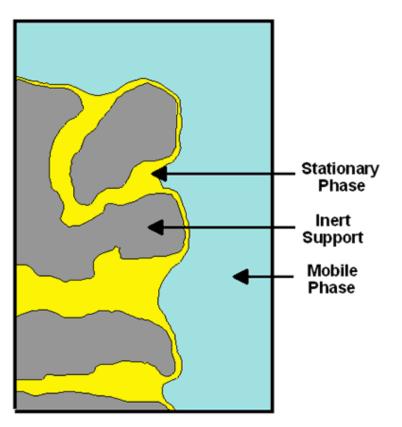




# eichrom Extraction Chromatography



Solvent Extraction



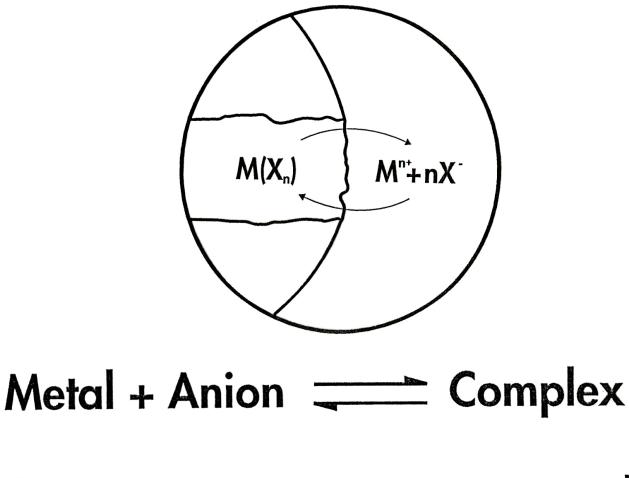

### Column Chromatography

# eichrom

# **Extraction Chromatographic Resin**

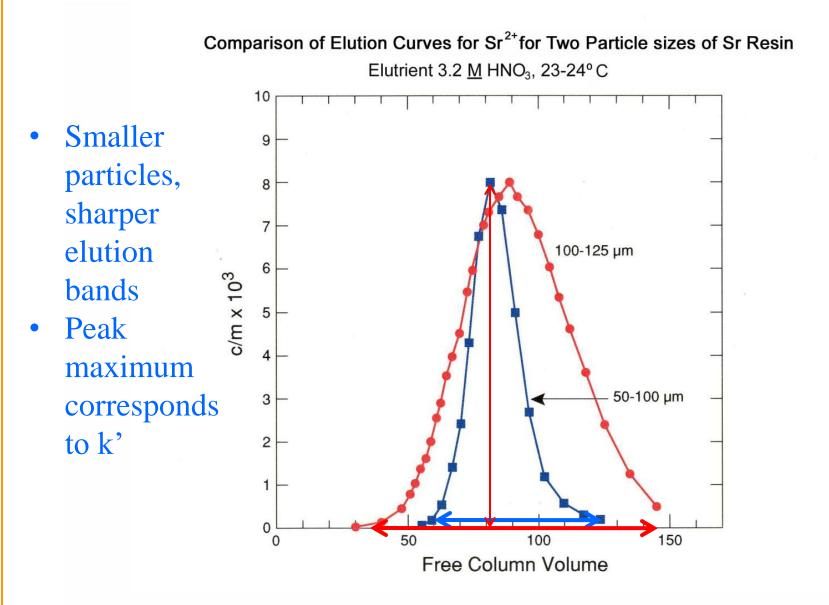
Surface of Porous Bead

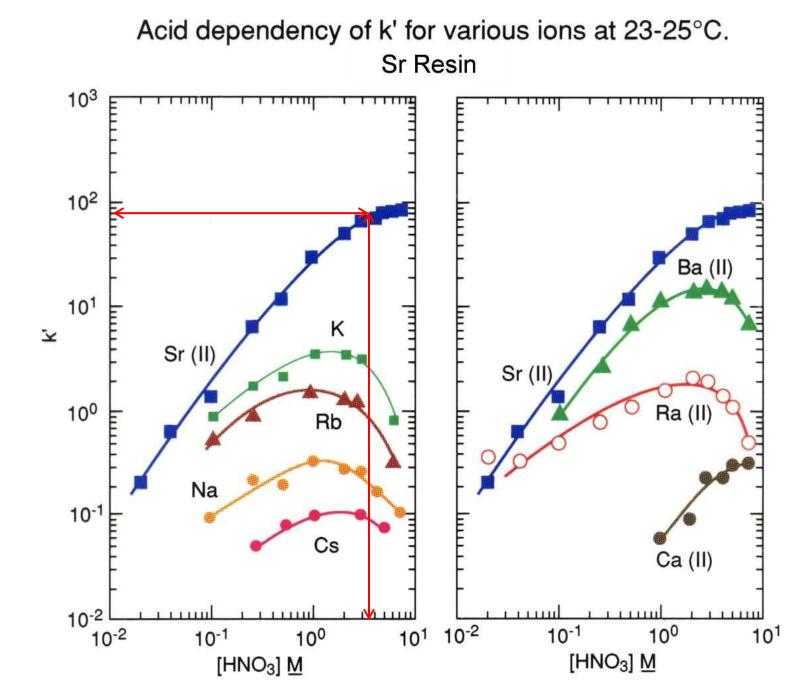



Inert support =

## Macroporous Acrylic Resin

**Example Stationary Phases** 


- •Crown Ether (Sr)
- •CMPO (TRU)
- •DAAP (UTEVA)


## **Metal Anion Complex Formation**



Complex + Organic ==== Extracted

# eichrom





# First Wave Response

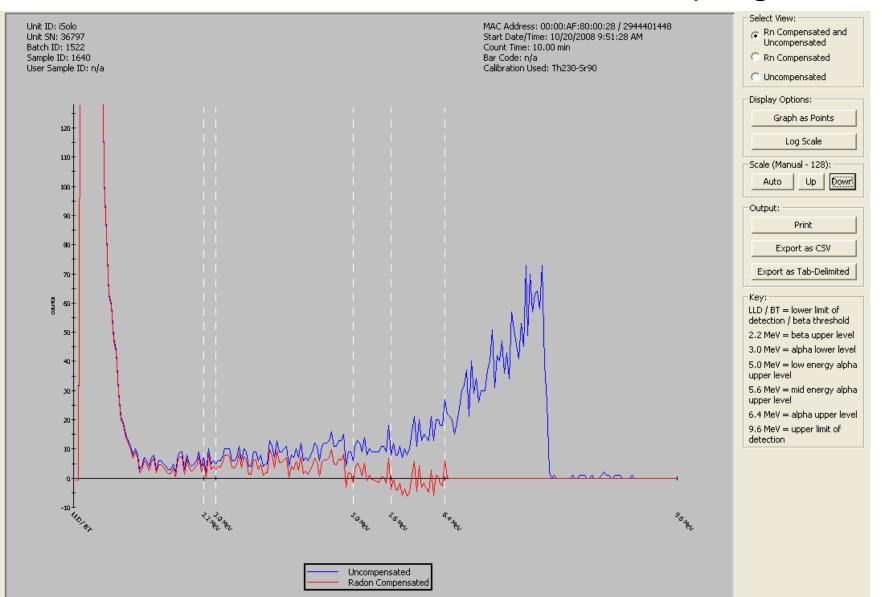
- <u>http://www.epa.gov/epahome/sciencenb/vid</u> <u>eo/merl/MerlVideo.swf</u>
- US EPA, Mobile Environmental Radiation Laboratory, MERL
- 4 HP Ge gamma detectors,
   2 alpha beta counters and an LSC
- Air filter and swipe samples



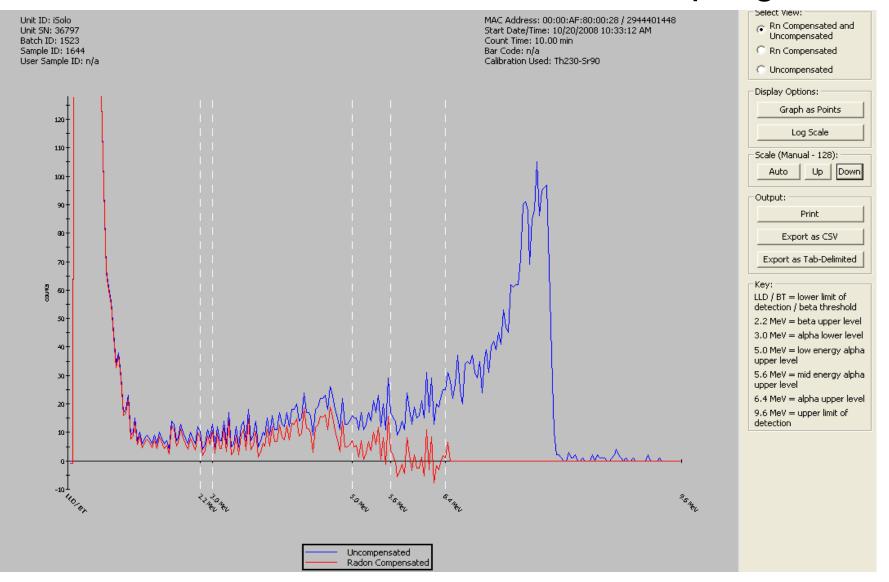
• Alpha and Beta isotopes can not be reliably identified, only quantified

- Radioactive Air Monitoring Issues:
  - Capturing Radioactive Particles
  - Detecting the emissions from the Particles
    - Contribution from filter media to the background
    - Loss & degradation of signal due to attenuation by filter media
  - Suitability of filter media for sampling conditions

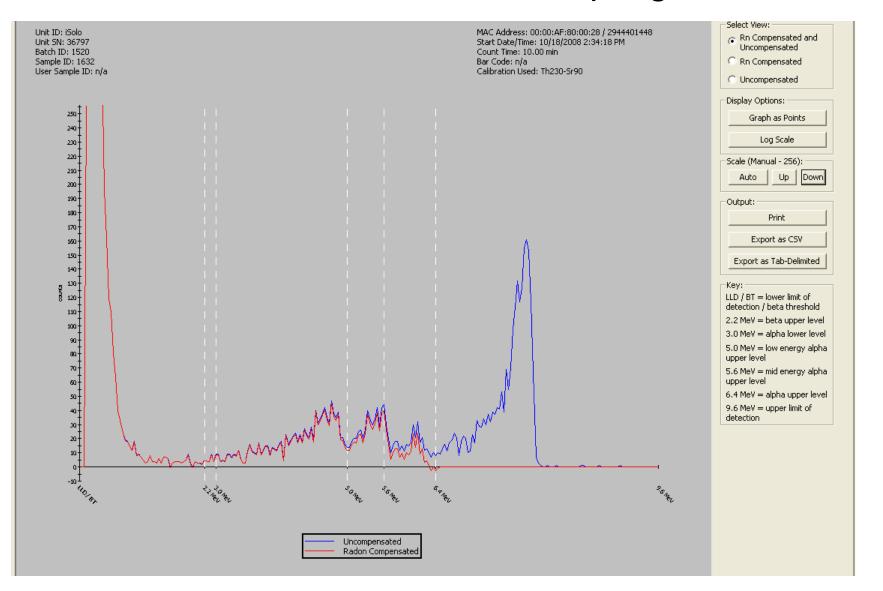
## Filter Backgrounds Via Gas Flow proportional counting


|             | α - alpha<br>Background<br>MDA=2.24<br>(dpm) | β - beta<br>Background<br>MDA=4.20<br>(dpm) |
|-------------|----------------------------------------------|---------------------------------------------|
| Cellulose   | 0.78 ± 1.12                                  | 0.17 ± 1.30                                 |
| Glass Fiber | 2.00 ± 1.56                                  | 4.52 ± 3.44                                 |
| PTFE Filter | 0.24 ± 0.70                                  | 0.31 ± 3.54                                 |

# eichrom


Filter Spiked with U-233 + Am-241 Alpha Analyze Part 2: Post-Air Sampling Spike Recovery (3 replicates)

| Filter type | Alpha<br>spike<br>(dpm) | Measured<br>before air<br>sampling<br>Alpha (dpm) | Initial %<br>Recovery | Measured Alpha<br>(dpm)<br>after air sampling | %<br>Recovery |
|-------------|-------------------------|---------------------------------------------------|-----------------------|-----------------------------------------------|---------------|
| Cellulose   | 474                     | 106 ± 3.4                                         | 22 %                  | 35.9 ± 20.2                                   | 8 %           |
| Glass       | 474                     | 237 ± 5.1                                         | 50 %                  | 225 ± 18.8                                    | 47 %          |
| PFTE        | 474                     | 415 ± 6.9                                         | 88 %                  | 397.8 ± 14.2                                  | 84 %          |


## Spiked Cellulose filter Post Air Sampling



## Spiked Glass Fiber Filter Post Air Sampling



## Spiked PTFE Filter Post Air Sampling – 1<sup>st</sup> 10 min



## Eichrom's Resolve<sup>®</sup> PTFE Laminate Filters

- Volumetric Flow
  - Resolve 47mm PTFE Filters have maintained a DOP 99.99% efficiency testing rating up to 9 CFM = 254 LPM
  - PTFE Filters maintain integrity even with mg of material loaded on the filter for your harshest applications.



Resolve PTFE Filter 3.0 µ PTFE Laminate 47mm dia. (50 to a package)

- Quality Control Specification:
  - Background < MDA for  $\alpha \& \beta$
  - Resolution verified <60 KeV FWHM</li>
  - Minimal curling <4.0 mm deflection</li>
- The filters have a easy to determine orientation: "Grid side down, Opposite Air flow"
- Performance demonstrated at Eichrom and externally
  - Lee Reagan of Canberra uses,
  - Peter Olsen of Washington Closure Hanford

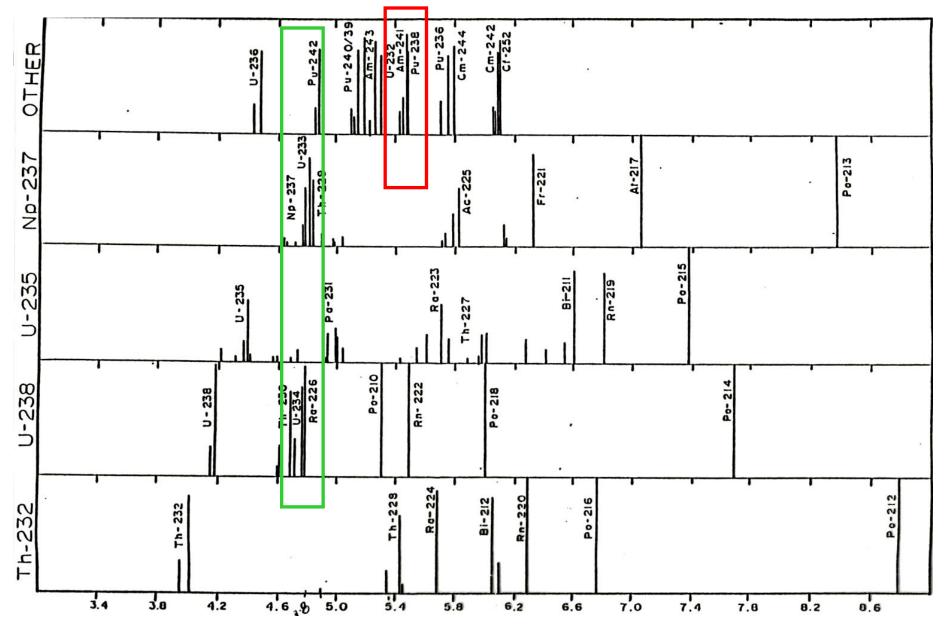




# Health Physics Sampling Smears

Swipe/Smears for contamination monitoring.

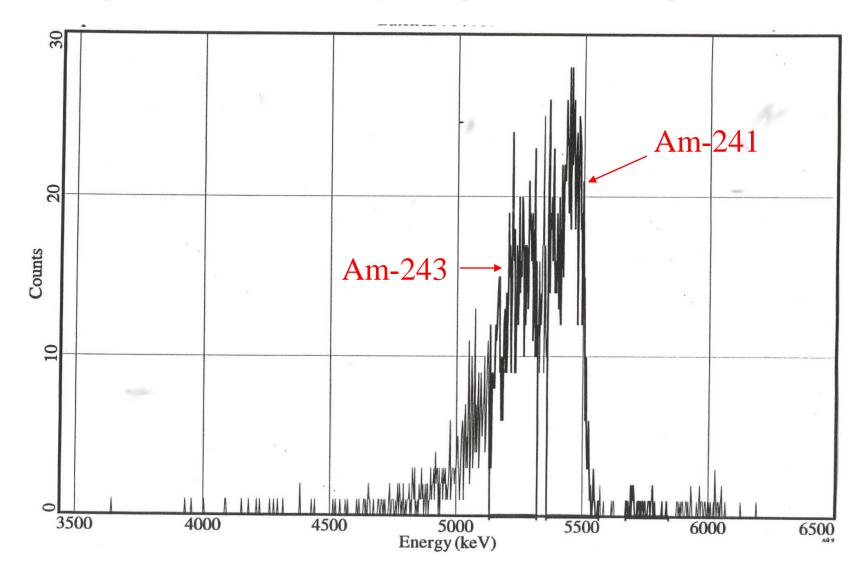
Two Formats:


- •Paper Backed with recorder paper
- •Bulk Packaged

## Features of Swipe / Smears

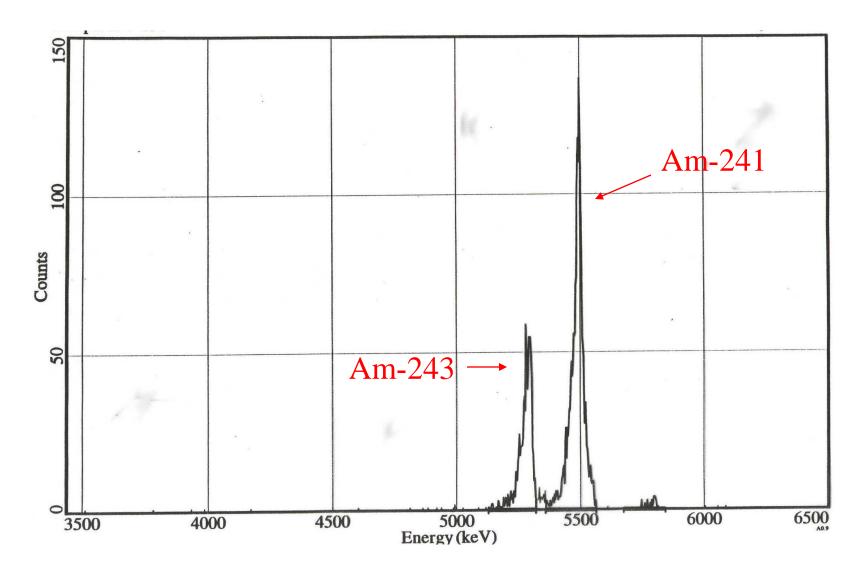
- 44.4mm (1 <sup>3</sup>/<sub>4</sub> inch) in Diameter Cloth Smear
- Pressure Sensitive adhesive backing/support
  - Allows for easy reattachment to support or planchet
- Backing and Smear can be removed together from support for analysis

| SAMPLING SMEAR # |      |  |  |  |  |
|------------------|------|--|--|--|--|
| Date             | Time |  |  |  |  |
| Location         |      |  |  |  |  |
|                  |      |  |  |  |  |
| Technician       |      |  |  |  |  |
| COUNT            | TYPE |  |  |  |  |
| NPO 185SS2005    |      |  |  |  |  |


## Measurement of Alpha Energy



# eichrom


### Americium Spectrum after TRU Resin Separation

presence of rare earths degrades spectrum- self absorption issues



## eichrom Am Spectrum after TEVA Resin Separation

Lanthanide elements removed - cleaner spectrum



eichrom Approaches to alpha and beta Emergency Response Measurements

- FDA- food
  - DGA Resin for Sr via Y, Am and Pu
- CDC-urine
  - TRU Resin for Th, U, Pu, Np and Am
- EPA-water
  - UTEVA + TRU Resin for U, Pu and Am
  - Sr Resin for Sr
  - MnO<sub>2</sub> Resin + Diphonix<sup>®</sup> Resin for Ra-226

### RadEx2011 Matrix Extension Study on Rapid Screening of Alpha/Beta Radionuclides in Foods

Zhichao Lin, Stephanie Healey, and Zhongyu Wu

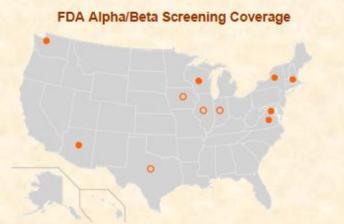
Food and Drug Administration Winchester Engineering and Analytical Center

- Study included 90 foods
  - Dairy, Vegetables, Composite Meal, Meat, Grain
  - 396 Matrix Spikes + 117
     matrix alpha blanks and 133
     beta blanks
  - Pu, Am and Y/<sup>90</sup>Sr measured by LSC



### INTRODUCTION

The Problem: FERN currently does not have rapid method and surge capacity for screening alpha/beta radionuclides in foods


The Solution: Development of method using high selectivity solid-phase extraction and discriminative liquid scintillation spectrometry for alpha/beta radioactivity detection

The Approach: Identify radionuclides of most concern → Single laboratory development → Collaborative matrix extension study → Proficiency testing → Proven network capability and capacity

The Objective: Develop and implement a robust high-throughput alpha/beta screening method that ensures effective FERN radiological emergency response

### INTRODUCTION

#### FERN Recourses for Screening Food Alpha/Beta Radioactivity



#### Participants

#### Contributors

| 11. Indiana Department of Health                           | 0   |
|------------------------------------------------------------|-----|
| 10 University of Iowa Hygienic Laboratory                  | 0   |
| 9. Illinois Emergency Management Agency                    | 0   |
| 8. Texas Department of State Health Services Laboratory    | 0   |
| 7. FDA Winchester Engineering and Analytical Center        | √ ● |
| 6. Sandia Staffing Alliance, Sandia National Laboratories  | 1.  |
| 5. Washington State Department of Public Health Laboratory | 1 . |
| 4. New York State Department of Health                     | 1 • |
| 3. Wisconsin State Laboratory of Hygiene                   | 1 • |
| 2. Virginia Division of Consolidated Laboratory Services   | 1.  |
| 1. Maryland Department of Health and Mental Hygiene        | 1 • |

\* Non-FERN Laboratory

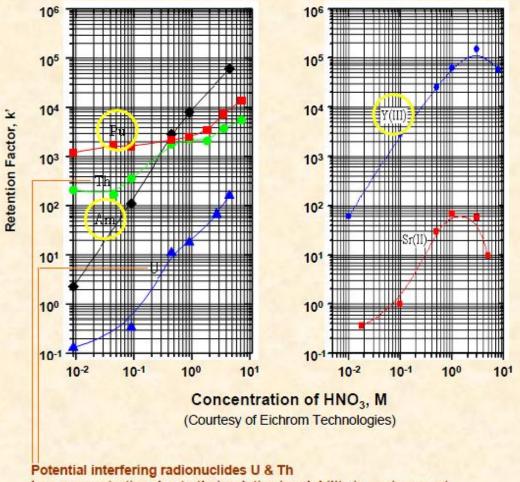
#### **Current Status:**

- 10/36 FERN rad labs equipped for α/β analysis
- 7/36 FERN rad labs having ability analyzing foods
- Limited α/β national coverage and surge capacity

#### Assumed Resources:

11 Labs 24 Analysts WEAC(8), CAPLAB(10), NONCAPLAB(6) 8 samples/analyst/day 7 days/week

#### Potential Surge-Capacity:

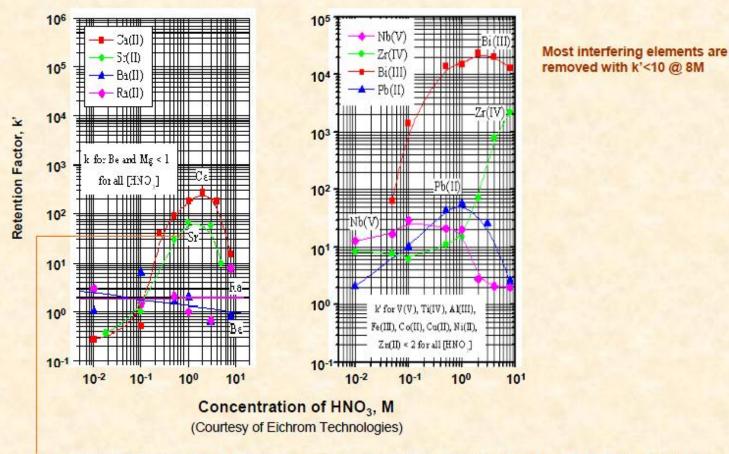

~1344 samples/week (Counter limited) ~2688 samples/week (24/7) (Counter limited & Unsustainable)

#### Preferred Surge-Capacity:

#### 2500 samples/week

### **METHOD DETAILS**

#### Target Radionuclides Retained by DGA Resin



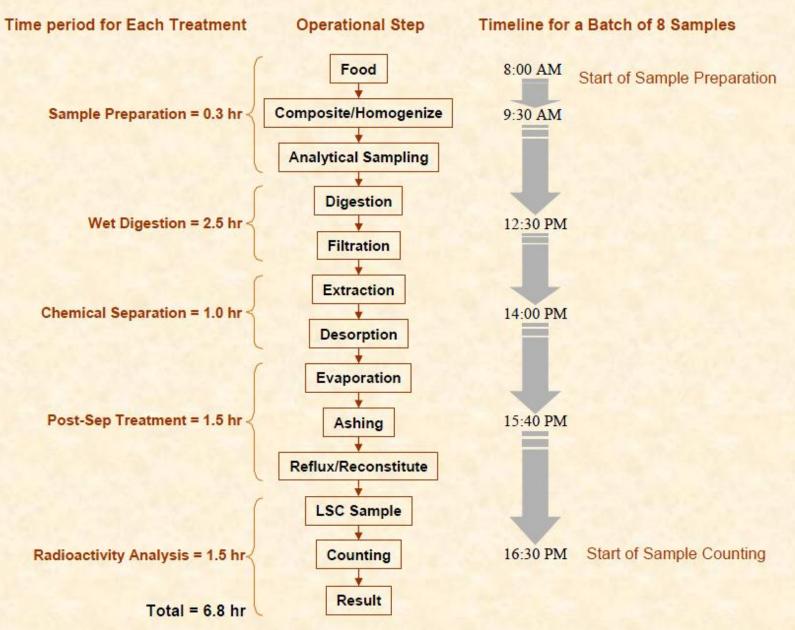

Target radionuclides are Selectively extracted with k'>10<sup>4</sup> @ 8M

Potential interfering radionuclides U & Th Low concentration due to their relative insolubility in environment Low specific activity due to their long half-life

### **METHOD DETAILS**

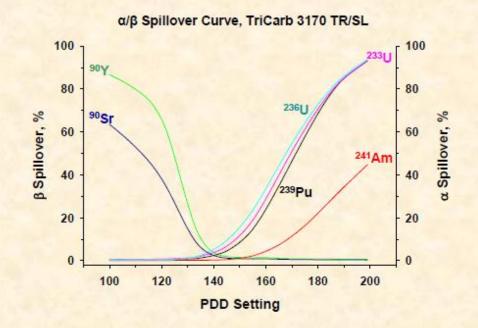
#### Matrix & Radiometric Interferences Removed by DGA Resin



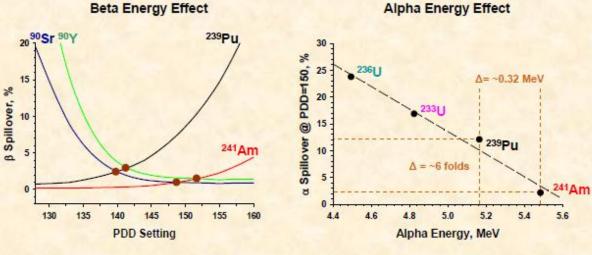

Sr/Y separation improves with increasing HNO<sub>3</sub> concentration. However, Sr(NO<sub>3</sub>)<sub>2</sub>  $\downarrow$  may occur @ HNO<sub>3</sub> >60% unless the sample is analyzed right after post-digestion filtration, the <sup>90</sup>Sr result may subject to low bias.

## FDA DGA Resin Separation Method for Food

- After Digestion with Concentrated Nitric Acid and 10 mL of 30% H<sub>2</sub>O<sub>2</sub> load onto 1 gram of 50-100μ DGA Resin, Normal Nitric > 4 M, batch uptake
- 10 mL of 3 M HNO<sub>3</sub> Rinse
- Extract Pu, Am and Y with 0.1 M Oxalate + 0.1 M HCl
- Ash to destroy oxalate for 20 minutes at 400°C
- Re-disolve in Conc. HNO<sub>3</sub>, Evaporate
- Dissolve in 3 mL of 0.5 M HCl add 17 mL Ultima Gold A/B
- Count by LSC
- No yield monitor


#### **METHOD DETAILS**

#### **Procedure Flow**

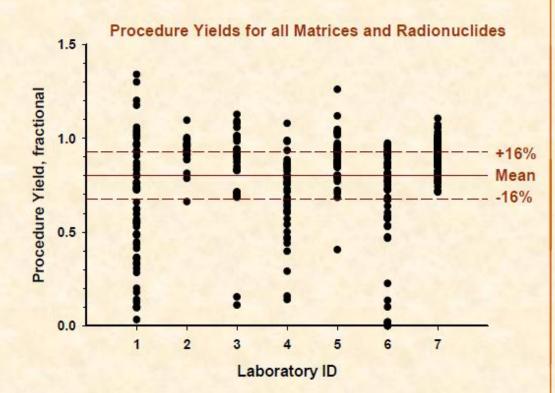



### ANALYSIS of STUDY RESULTS

#### Energy Dependence of $\alpha/\beta$ Spillover Correction



**Beta Energy Effect** 




Observation/Action:

- While analyzing the samples mixed with <sup>239</sup>Pu/<sup>90</sup>Sr, use of <sup>241</sup>Am/<sup>90</sup>Sr spillover curve to correct a/ß counts may result in high bias for <sup>90</sup>Sr & low bias for <sup>239</sup>Pu
- The energy effect of using <sup>90</sup>Sr and purified <sup>90</sup>Y on β spillover calibration is relatively small
- The suspected outliers are confirmed and excluded from data analysis

#### ANALYSIS of STUDY RESULTS

#### Matrix Spike Results without Outliers



#### **Observation/Action:**

- The plot shows that the procedure yields have a grand mean of ~80% with an inter-laboratory variability of ±16%
- The within-laboratory variation is greater than laboratory mean variation
- The significant difference in laboratory means may justify use of lab-specific yield
- The factors contribute to yield discrepancy and variability must be determined

### QUANTITATIVE DETERMINATION OF ULTRA-TRACE ACTINIDES IN URINE BY ON-LINE HPLC-ICP-MS

#### <u>Yongzhong Liu<sup>1</sup></u>, David P Saunders<sup>2</sup>, Kathleen Caldwell<sup>2</sup> and Robert Jones<sup>2</sup>

<sup>1</sup>Battelle Memorial Institute <sup>2</sup>Inorganic Radiation & Analytical Toxicology Branch National Center for Environmental Health, CDC;

> 57th Annual RRMC October 30 – November 4, 2011



National Center for Environmental Health

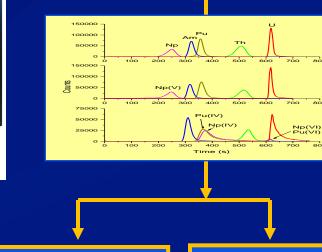
Division of Laboratory Sciences

# Disclaimer

Mention of company or product names does not constitute endorsement by the **National Center for Environmental Health** (NCEH), **Centers for Disease Control and Prevention (CDC)**, or the Public Health Service (PHS).

#### **CDC'S URINE RADIONUCLIDE** SCREEN **Urine Sample "Spot"**

Gamma Radionuclide Screen Alpha/Beta Radionuclide Screen/Quantification




Gamma Radionuclide Quantification



Alpha Spectroscopy

Quantification



Alpha (Long Lived) ICP-MS Screen

**Mass Spectroscopy** Quantification



**High Resolution** Mass Spectroscopy Quantification

-

800

#### **PROBLEMS – ACTINIDES DETECTION IN URINE**

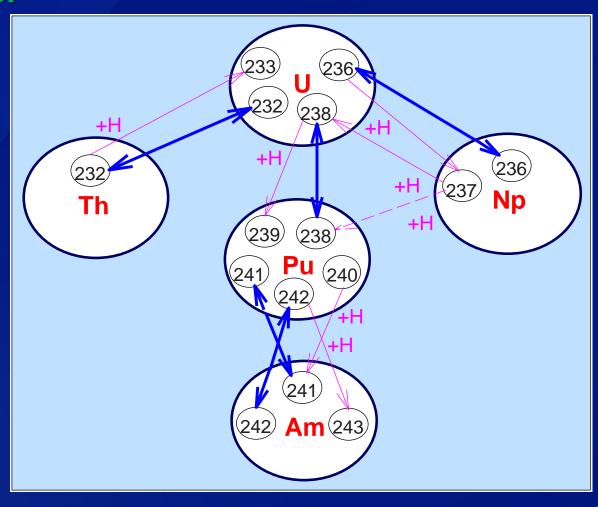
Ultra-trace concentration levels
 sub- pg/ml to ng/ml, technique with low LOD

Complicated matrix with large amount of salts

sample pre-treatment

Multi-element analytical requirement

### **ACTINIDE ANALYTICAL TECHNOLOGIES**


Separation: On-line extraction chromatography

 Extraction chromatography is stationary-phase solvent extraction, and it is a modified liquid-liquid extraction.

Detection: Quadrupole ICP-MS
 ICP-MS has low limits of detection for long-lived radionuclides, short analytical time and multi-element analytical ability.

### ACTINIDE DETECTION BY ICP-MS THE PROBLEMS

Polyatomic ions: <sup>236</sup>UH and <sup>237</sup>Np <sup>238</sup>UH and <sup>239</sup>Pu <sup>237</sup>NpH and <sup>238</sup>U <sup>232</sup>ThH and <sup>233</sup>U <sup>240</sup>PuH and <sup>241</sup>Am <sup>242</sup>PuH and <sup>243</sup>Am <sup>237</sup>NpH and <sup>238</sup>Pu > Isobars: <sup>232</sup>U and <sup>232</sup>Th <sup>236</sup>U and <sup>236</sup>Np <sup>238</sup>U and <sup>238</sup>Pu <sup>241</sup>Am and <sup>241</sup>Pu <sup>242m</sup>Am and <sup>242</sup>Pu



### EXPERIMENTAL

### **TRU columns**

FRU resin (Eichrom Inc.) particle size of 20-50 µm

PEEK column with an id of 4.6 mm and length of 50 mm

# EXPERIMENTAL

### **Sample preparation**

- a) 0.5 ml urine + 0.2 ml conc. nitric acid (2 ml centrifuge tube, screw cap with O-ring)
- b) Sand bath at 85° C for 45 min.
- C) Cool down, open tube, add DI water and shake with Vortex mixer
- d) Centrifuge at 15,000 g (RCF) for 10 min.
- e) Transfer 1.4 ml supernate to Dionex sample vial
- f) Add 50  $\mu$ I 2.5% FeSO<sub>4</sub> to the sample vial

### EXPERIMENTAL

### **Elution procedures**

a) The column was washed with 3 M nitric acid to remove urine matrix and precondition for 3+ min.

b) 1ml sample injection

C) Am, Np and Pu were eluted by gradient run in steps 4 to 5
 d) Th and U were eluted by isocratic run in steps 6 to 7

# EXTRACTION CHROMATOGRAPHY ELUTION

| Ste<br>p | Time |                         | E          | luent                   |                    | Separation Process                  |  |
|----------|------|-------------------------|------------|-------------------------|--------------------|-------------------------------------|--|
|          |      | HNO <sub>3</sub><br>(%) | HCI<br>(%) | H <sub>2</sub> O<br>(%) | Oxalic acid<br>(%) |                                     |  |
| 1        | INIT | 100                     |            |                         |                    | Column precondition                 |  |
| 2        | 0    | 100                     |            |                         |                    | Sample injection and matrix removal |  |
| 3        | 3    | 100                     |            |                         |                    |                                     |  |
| 4        | 3.1  |                         | 40         | 40                      | 20                 | Elution of Am, Np and Pu            |  |
| 5        | 7.0  |                         | 1.0        | 79                      | 20                 |                                     |  |
| 6        | 7.1  |                         | 0.3        | 79.7                    | 20                 | Elution of Th and U                 |  |
| 7        | 14   |                         | 0.3        | 79.7                    | 20                 |                                     |  |
| 8        | 14.1 |                         |            | 100                     |                    | Column cleanup                      |  |
| 9        | 18   |                         |            | 100                     |                    |                                     |  |

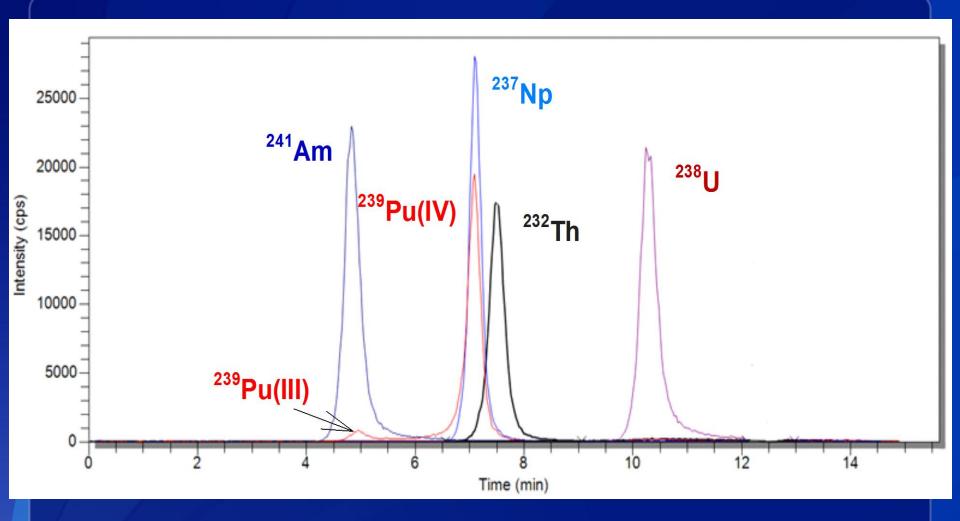



Fig. 7. Actinides (0.1 ng/ml) in diluted urine sample by adding 50 μl 2.5% iron (II) sulfate. Two Pu peaks Pu(III) and Pu(IV) can be integrated together.

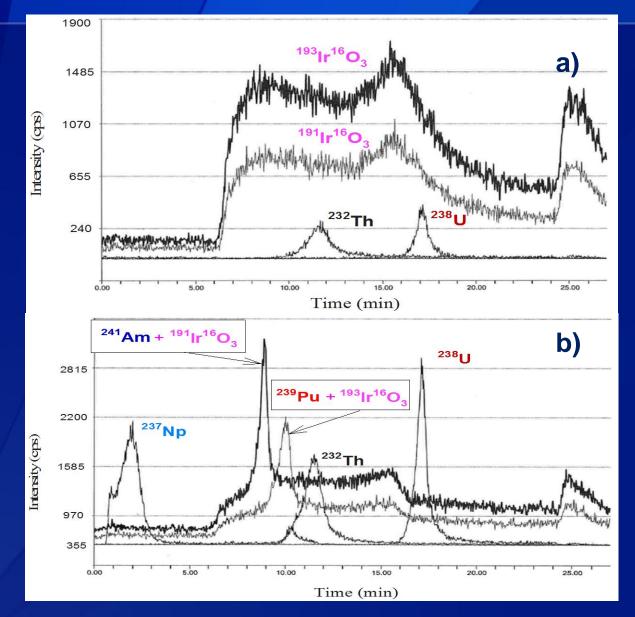



Fig. 10. a) Iridium oxides in a blank sample; b) iridium oxide interference with <sup>241</sup>Am and <sup>239</sup>Pu.

### **QUANTIFICATION**

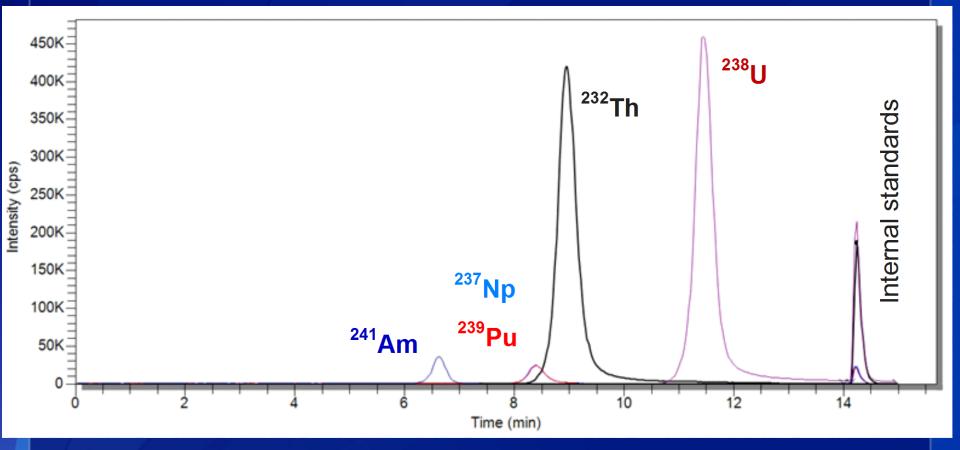



Fig. 12. Chromatogram of actinide quantification analysis with post-column internal standard injection.

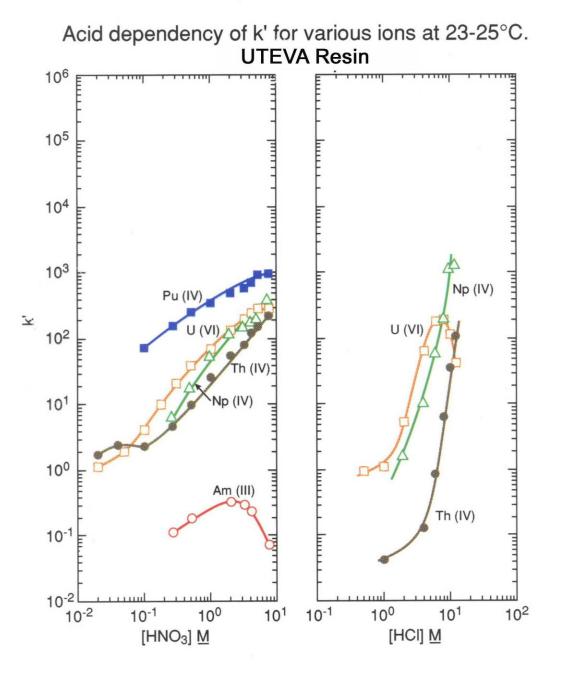
# Conclusions

Ultra-trace actinides (Am, Pu, Np, Th and U) in urine matrix can be sufficiently separated and quantified using a single TRU resin packed extraction chromatography column combined with an quadrupole ICP-MS.

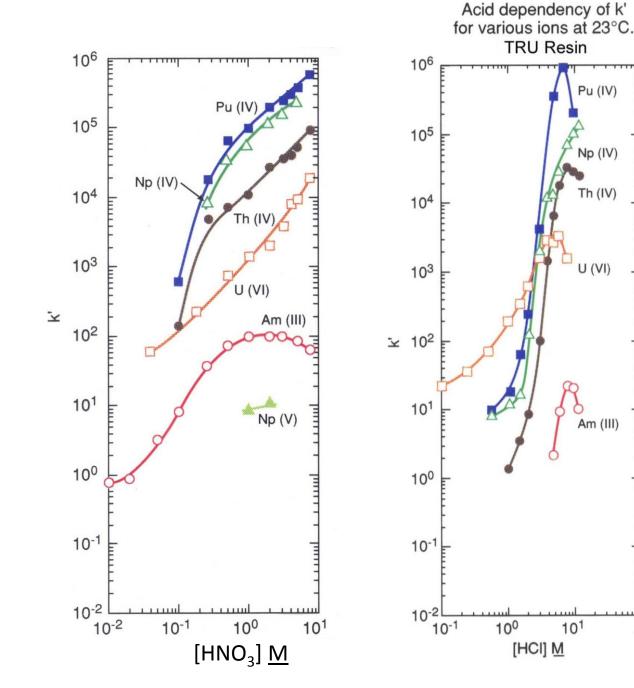
1 ml sample injection —> sub-pg/ml to pg/ml levels

Shortened sample analytical time, long column life and a stable instrumentation system were achieved in this study.

20 min. per sample

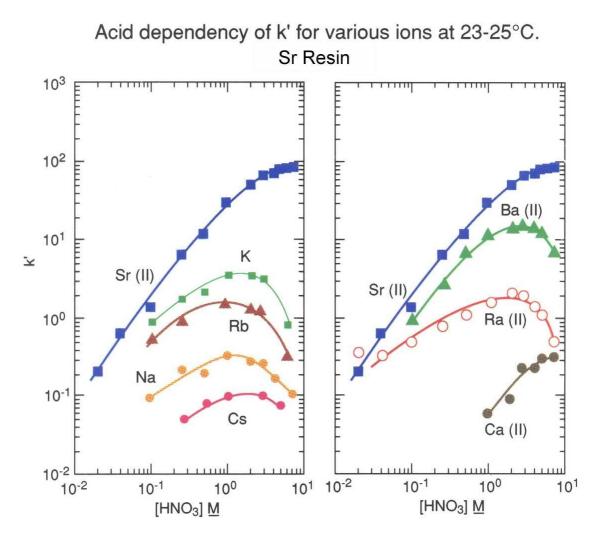

# US EPA

- Published "Rapid Radiochemical Methods for Selected Radionuclides in Water for Environmental Restoration Following Homeland Security Events" in February 2010
- Methods use Vacuum Box System, 24 sample capacity
- DQO's follow MARLAP guidance
  - Relative method uncertainty of 13% at or above a default analytical Action Level
    - - 15 pCi/L for <sup>241</sup>Am and <sup>238, 239/240</sup>Pu; 20 pCi/L for <sup>234,235,238</sup>U; 5 pCi/L for <sup>226</sup>Ra and 8 pCi/L for <sup>90</sup>Sr
  - Sample batch processing time 8-38 hours
  - Single Operator Testing conducted to validate the method, but not part of published records


## EPA Methods

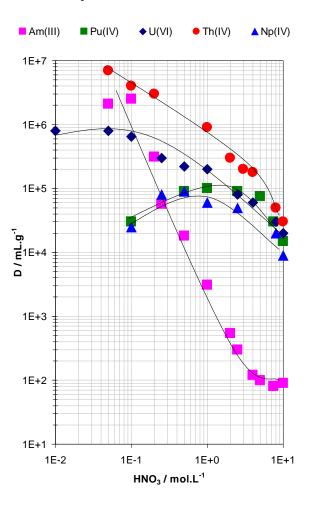
- U, Pu and Am are written as individual methods, but may be performed in tandem
- Patterned after Eichrom ACW03 VBS
- Water Sample is precipitated with calcium phosphate and then dissolved into Nitric acid with Pu reduced to (III)
- Source is prepared using neodymium fluoride ppt and alpha counted

- Sample is dissolved into 3 M HNO<sub>3</sub> with ferrous sulfamate and ascorbic acid
- U is Retained on UTEVA
- Pu(III) and Am are loaded onto TRU
- U is eluted with 1 M HCl




- Pu is oxidized to (IV) with NaNO<sub>2</sub>
- Am is eluted with 4 M HCl
- Pu is eluted with 0.1 M ammonium bioxalate




# **EPA Sr Analysis**

- Carbonate precipitation of water sample
- Load resin with 8 M HNO<sub>3</sub>
- Rinse with 3 M nitric+0.05 M oxalic acid
- Elute with 0.05 M HNO<sub>3</sub>
- Count by proportional counter



# EPA Radium-226 Analysis

- Yield traced with Ra-225
- From neutral pH, load sample onto 1 g MnO<sub>2</sub> Resin- batch extraction option, or column
- Resin is stripped with 10 mL 2 M HCl + H<sub>2</sub>O<sub>2</sub>
- Load onto 1 g of Diphonix Resin
- Rinse with 2 X 5mL 2 M HCl and collect the Ra
- The Diphonix retains/removes any Th, Ac, or other higher valance elements



Diphonix<sup>®</sup> Resin

# Ra-226 Continued

- Diphonix Rinse containing the Ra and Ba is precipitated as the sulfate
- 5 mL of isoproanol is added
- Sample is placed in ultrasonic cold water bath-20 minutes
- Pre-wet a 0.1 micron filter with methanol or ethanol and filter sample
- Rinse with 20% isopropanol to dissolve residual (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>

## Ra-226 continued

- Allow at least 24 hours for <sup>217</sup>At (Astatine) to grow in
- Count by Alpha spectrometry

### Matrix Considerations-Maxwell et al.

- 5 Papers-Emergency Response
  - Air Filters
  - Soil
  - Concrete/Brick
  - Vegetation
  - Food



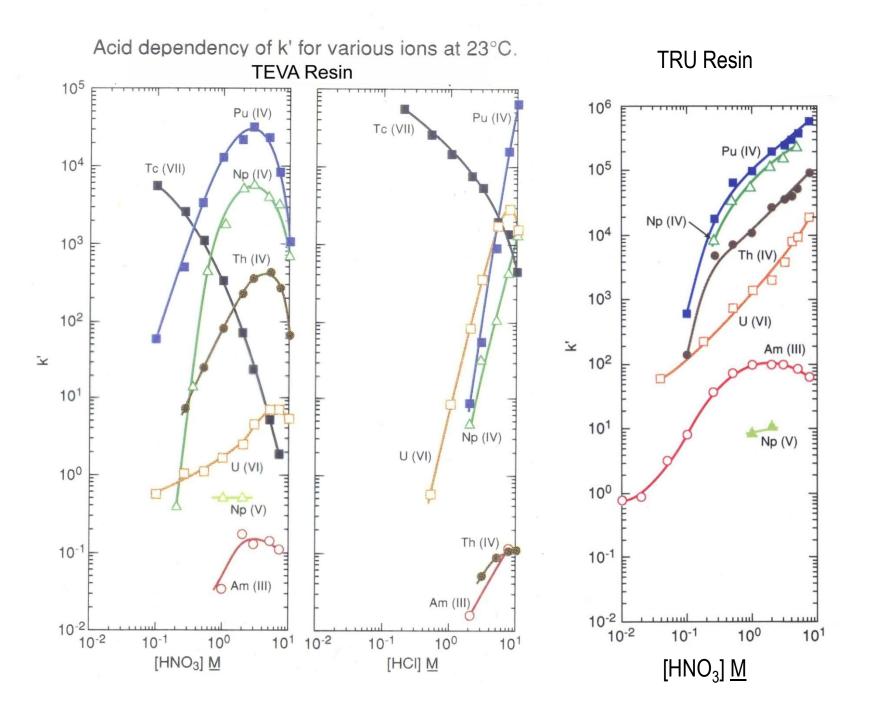
### **Fukushima Air Filters/ Sr Analysis**

#### Cellulose nitrate filters

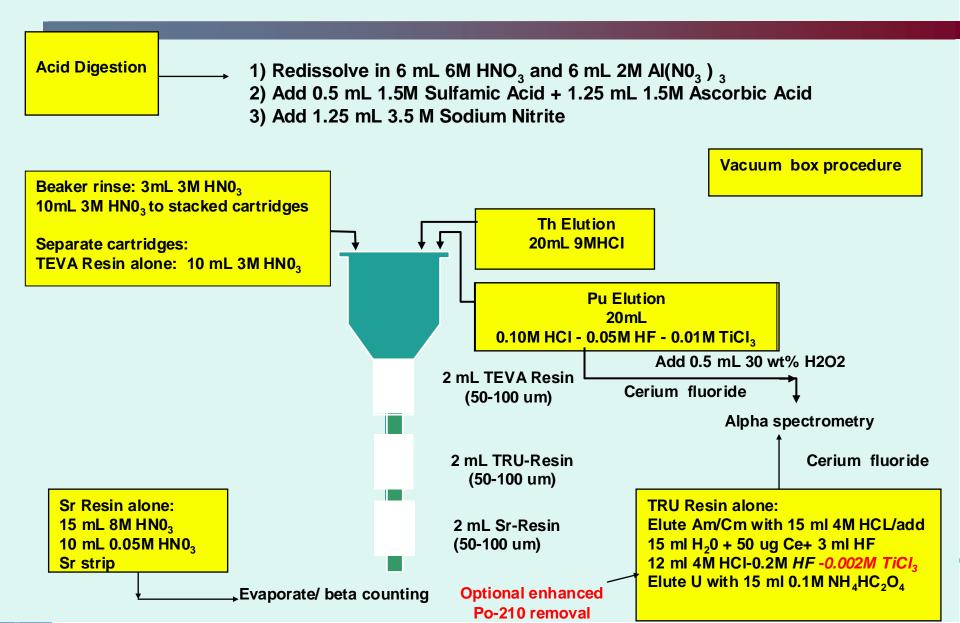
- HNO<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, HF digestion
  - Repeat HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> to dryness several times, then with 3ml 3M HNO<sub>3</sub>-boric acid
- Redissolve in 20 ml 8M HNO<sub>3</sub>
- Took 10 ml aliquot/held back 10 ml in reserve
- Added 2 ml 2M Al(NO<sub>3</sub>) 3
- Separate using 2 ml Sr Resin
  - twice for very high total beta samples (>1000 pCi/filter)
  - Important to ensure all beta interferences were removed
- High, consistent Sr gravimetric yields (85-95%)
- Gas flow proportional counting
  - Simultaneous drawer counting system
- Results within hours!








### Approach


- Actinides (Pu,Np, Am, Cm, U) and Sr-89/90
  - Air Filters
    - HNO<sub>3</sub>+ HF digestion
    - Rapid and quantitative
    - TEVA Resin +TRU Resin + Sr Resin
    - CeF<sub>3</sub> microprecipitation-alpha spectrometry
    - Sr-89/90- gas proportional counting
      - Gravimetric recovery-Sr carrier (4mg)

Maxwell, S., Culligan, B. and Noyes, G. Applied Radiation and Isotopes Vol. 68, Issue 12, December 2010, Pages 2125-2131





### **Actinides and Sr-90 in Air Filters**



#### **NRIP-2009 Air Filters Turnaround Times**

| Nuclide           | Turnaround Time (Hrs.) |  |  |  |
|-------------------|------------------------|--|--|--|
| <sup>238</sup> Pu | 3.9                    |  |  |  |
| <sup>240</sup> Pu | 3.9                    |  |  |  |
| <sup>241</sup> Am | 3.6                    |  |  |  |
| <sup>238</sup> U  | 3.7                    |  |  |  |
| 234 U             | 3.7                    |  |  |  |
| <sup>90</sup> Sr  | 3.3                    |  |  |  |



#### **NRIP -2009 Air Filters Performance vs. NIST**

| Nuclide           | Avg. Difference (%) |  |  |
|-------------------|---------------------|--|--|
| <sup>238</sup> Pu | 3.3                 |  |  |
| <sup>240</sup> Pu | -7.3                |  |  |
| <sup>241</sup> Am | 7.6                 |  |  |
| 238 U             | -3.1                |  |  |
| 234 U             | -3.4                |  |  |
| <sup>90</sup> Sr  | -9.9                |  |  |



### Sr-89/90 Fukushima Air Filter Work

| AF          |    | Avg. Sr. Carrier |             | % Recovery | Approximate      |
|-------------|----|------------------|-------------|------------|------------------|
| Batch       | Ν  | % Recovery       | +/- 1 sigma | LCS        | MDC (pCi/filter) |
| A           | 14 | 60.0             | 15.0        | 82.5       | 1 - 2            |
| В           | 14 | 92.3             | 5.3         | 100.1      | 1 - 1.5          |
| A`          | 16 | 91.1             | 7.3         | 88.6       | 1                |
| B`          | 16 | 91.6             | 4.3         | 94.6       | 1                |
| C`          | 16 | 92.7             | 7.3         | 104.0      | 1                |
| ARF19       | 17 | 79.9             | 4.7         | 92.0       | 0.7              |
| AF/Swipes A | 7  | 93.3             | 4.0         | 94.1       | 0.5              |
| AF/Swipes B | 7  | 80.2             | 10.7        | 102.7      | 0.5              |
| Avg.        |    | 85.1             |             | 94.8       |                  |

for the air filter batches A, B, A`, B` and C` - analyzed only 10 of the 20ml dissolved aliquot ARF19 used 15 of 20 ml

AF/Swipe batches used the entire sample



### **Fukushima Soil Samples - Actinides**

- Actinides
  - Screening with rapid fusion method (2g)
  - Analysis of large sample aliquots to achieve lower MDAs
    - Volcanic island soil contains high levels of Fe
    - Limited sample aliquot size
  - Used multiple aliquots and loaded to TEVA+TRU+DGA
    - Recombined final purified solutions from multiple purified aliquots into a single CeF<sub>3</sub> micro-ppt
      - removes uranium with  $H_2O_2$  present (U<sup>6+)</sup>

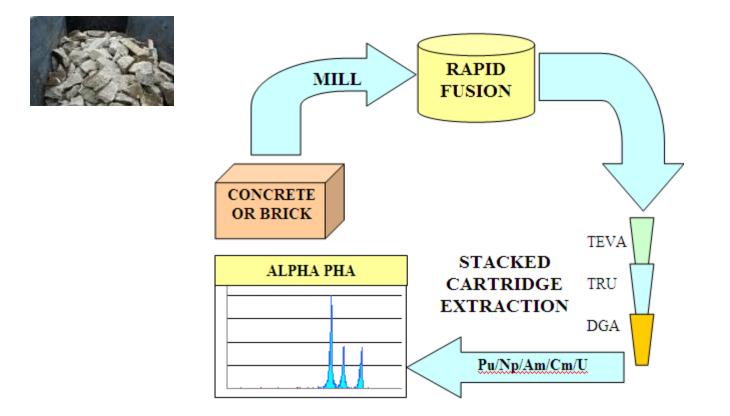
#### Needed to determine actinides isotopes by alpha/ICP-MS

- Could not split purified aliquots between alpha and ICP-MS since we needed lowest MDA possible for Pu
- so we counted 100% of aliquot by alpha spectrometry 1<sup>st</sup>
- And then....



### **Fukushima Soil Samples - Actinides**

- Further processing for ICP-MS
  - Redissolved actinides after alpha counting filters using HNO<sub>3</sub>-boric acid
  - Loaded onto TEVA Resin, rinsed with 3M HNO3, and eluted Pu with ICP-MS friendly solution (0.25M HCL-0.005M HF-0.001MTiCl<sub>3</sub>)
- Did not need to move Pu to DGA to remove U\*
  - since micro-CeF<sub>3</sub> ppt. with H<sub>2</sub>O<sub>2</sub> present used to prepare counting sources removes 1000x uranium
- Having a range different rapid separation 'tools' allowed us to adapt to specific sample needs
- \* Health Physics: August 2011 Volume 101 Issue 2 pp 180-186, Rapid Determination of 237Np and Plutonium Isotopes in Urine By Inductively-Coupled Plasma Mass Spectrometry and Alpha Spectrometry, Maxwell, Sherrod L.; Culligan, Brian K.; Jones, Vernon D.; Nichols, Sheldon T.; Noyes, Gary W.; Bernard, Maureen A.\* [>10E6 U decontamination of Pu)

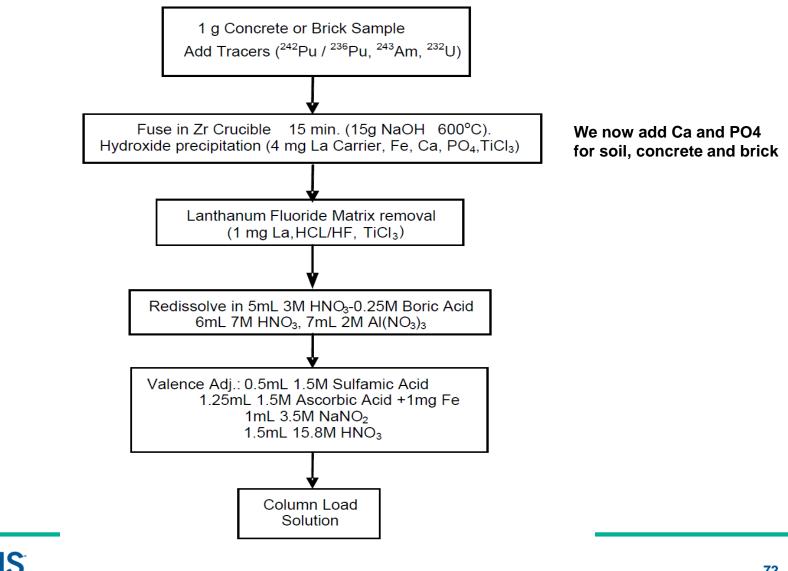



### Actinides in Soil: Summary of SRS Approach

- 0.5 -2 grams direct fusion (NaOH)
- 2 -10 grams HNO<sub>3</sub>-HF Si removal, then fusion
- 10 -100+ grams acid leach
- In all cases we use Fe/Ti OH precipitation followed by LaF<sub>3</sub> precipitation
  - to preconcentrate actinides and eliminate soil matrix
    - Silicates, Fe
  - Sr-89/90 can be collected also (Ca + PO4)

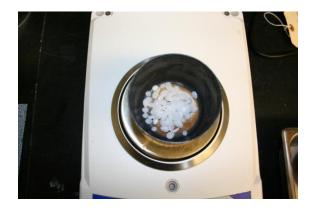


### **Rapid Fusion Application for Concrete and Brick**

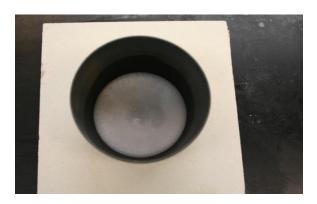



Anal Chim Acta. 2011 Sep 2;701(1):112-8. Epub 2011 Jun 15.

Rapid radiochemical method for determination of actinides in emergency concrete and brick samples. <u>Maxwell SL</u>, <u>Culligan BK</u>, <u>Kelsey-Wall A</u>, <u>Shaw PJ</u>.




### **Rapid Concrete and Brick Sample Preparation**




### **Rapid Sodium Hydroxide Fusion**

- Great for silicates
- ~10 minutes

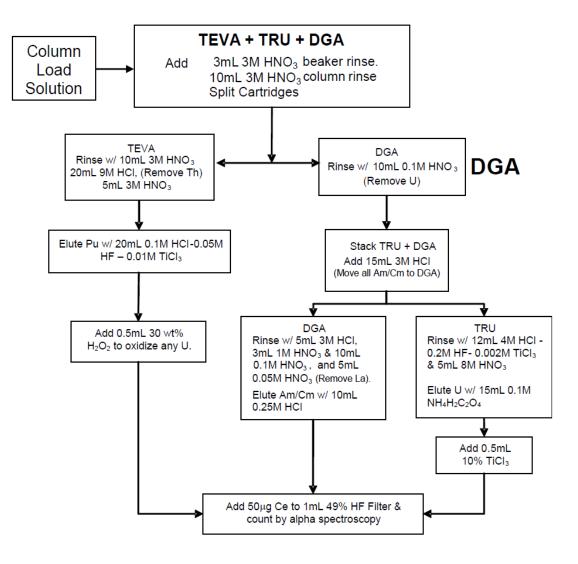











## The Magic of DGA



Source: http://www.eichrom.com/products/info/dga\_resin.cfm



### **Rapid Column Separation**





#### Pu and Np results for brick samples (with MAPEP 18 standard)

| Sample ID    | <sup>236</sup> Pu Yield<br>(%) | <sup>238</sup> Pu Measured<br>mBq g <sup>-1</sup> | <sup>239</sup> Pu Measured<br>mBq g <sup>-1</sup> | <sup>237</sup> Np Measured<br>mBq g <sup>-1</sup> |
|--------------|--------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 1            | 95.9                           | 15.4                                              | 20.6                                              | 34.3                                              |
| 2            | 89.5                           | 16.6                                              | 16.5                                              | 35.2                                              |
| 3            | 107.6                          | 13.7                                              | 18.0                                              | 32.2                                              |
| 4            | 85.0                           | 14.0                                              | 14.8                                              | 33.4                                              |
| 5            | 95.7                           | 15.6                                              | 16.2                                              | 40.3                                              |
| Avg.         | 94.7                           | 15.1                                              | 17.2                                              | 35.1                                              |
| 1SD          | 8.5                            | 1.2                                               | 2.2                                               | 3.1                                               |
| %RSD         | 9.0                            | 7.9                                               | 12.8                                              | 8.9                                               |
| Reference    |                                | 14.8                                              | 18                                                | 37                                                |
| % Difference |                                | 1.8                                               | -4.3                                              | -5.2                                              |

Pu-239 is refractory in MAPEP 18 soil standard



#### Am and Cm results for brick samples (with MAPEP 18 standard)

| Sample ID    | <sup>243</sup> Am Yield<br>(%) | <sup>241</sup> Am Measured<br>mBq g <sup>-1</sup> | <sup>244</sup> Cm Measured<br>mBq g⁻¹ |
|--------------|--------------------------------|---------------------------------------------------|---------------------------------------|
| 1            | 91.5                           | 22.6                                              | 38.1                                  |
| 2            | 92.0                           | 24.5                                              | 35.8                                  |
| 3            | 94.8                           | 24.3                                              | 34.6                                  |
| 4            | 92.4                           | 26.2                                              | 34.9                                  |
| 5            | 98.0                           | 23.3                                              | 34.4                                  |
| Avg.         | 93.7                           | 24.2                                              | 35.6                                  |
| 1SD          | 2.7                            | 1.4                                               | 1.5                                   |
| %RSD         | 2.9                            | 5.7                                               | 4.3                                   |
| Reference    |                                | 25.4                                              | 35                                    |
| % Difference |                                | -4.8                                              | 1.6                                   |



#### U results for brick samples (with MAPEP 18 standard)

| Sample ID    | <sup>232</sup> U Yield<br>(%) | <sup>234</sup> U Measured<br>mBq g⁻¹ | <sup>238</sup> U Measured<br>mBq g⁻¹ |
|--------------|-------------------------------|--------------------------------------|--------------------------------------|
| 1            | 81.1                          | 31.5                                 | 26.9                                 |
| 2            | 85.7                          | 27.8                                 | 31.4                                 |
| 3            | 89.3                          | 27.8                                 | 29.9                                 |
| 4            | 91.4                          | 21.5                                 | 28.8                                 |
| 5            | 92.8                          | 25.2                                 | 27.7                                 |
| Avg.         | 88.1                          | 26.7                                 | 28.9                                 |
| Corr. Avg.   |                               | 25.7                                 | 28.0                                 |
| 1SD          | 4.7                           | 3.7                                  | 1.8                                  |
| %RSD         | 5.4                           | 13.8                                 | 6.1                                  |
| Reference    |                               | 28.4                                 | 29.6                                 |
| % Difference |                               | -5.9                                 | -2.3                                 |

avg  $^{238}$ U in unspiked 1g sample = 0.94 mBq avg  $^{234}$ U in unspiked 1g sample = 1.02 mBq

<sup>A</sup> average spiked sample result corrected for unspiked content



### Summary

- Rapid fusion method is effective for concrete and brick
  - Stack cartridges with vacuum flow
  - TEVA (Pu,Np) +TRU (U) +DGA (Am,Cm)
  - TEVA (Pu, Np)
  - TEVA+DGA (Pu+Am,Cm)
  - TEVA+TRU (Pu, U)
- Alpha spectrometry or ICP-MS

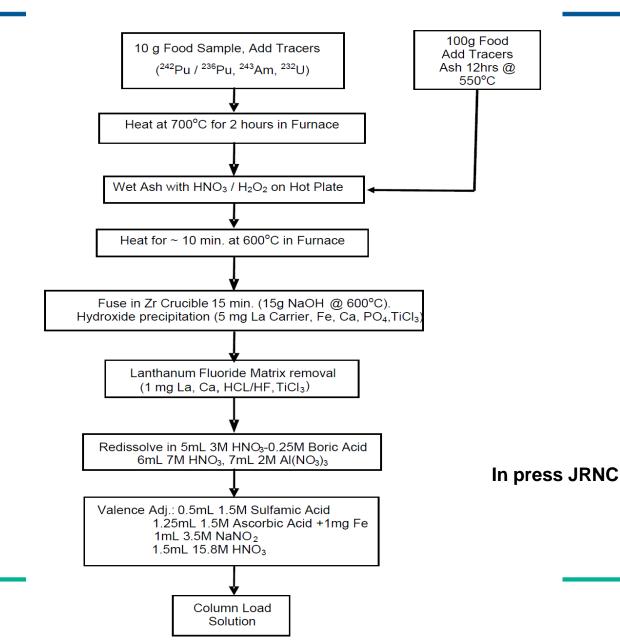


## **Food-Approach**

- Could we apply rapid fusion technology we have used for NRIP emergency vegetation samples to food ?
  - Previous method: furnace, wet-ash, acid leach digestion
    - Residual ash/solids
    - Lower tracer recoveries
  - Now: furnace, wet-ash, rapid fusion
  - Why: eliminate lower, inconsistent yields and improve quality
  - TEVA Resin +TRU Resin + DGA Resin, then Sr Resin
  - CeF<sub>3</sub> microprecipitation-alpha spectrometry
  - Sr-89/90- gas proportional counting
    - Gravimetric recovery-Sr carrier (4mg)
  - Results in <8 hours</p>

Maxwell, S., Culligan, B. and Noyes, G., Rapid Separation of Actinides and Radiostrontium in Vegetation Samples, J. Radioanal. Nucl. Chem, (2010), 286:273–282




### **FDA Requirements**

- U.S Food and Drug Administration (FDA) has provided guidance regarding accidental contamination of foods to state and local agencies so that protective actions may be taken
- FDA Derived Intervention Level (DIL) for <sup>238</sup>Pu+ <sup>239</sup>Pu + <sup>241</sup>Am is 2 Bq/kg (2 mBq/g or 0.054 pCi/g).
  - DILs were calculated to help protect even the most vulnerable segments of the population by limiting radiation dose from ingestion.
- Rapid and effective analysis methods are essential to allow responsible officials to apply protection actions.
  - U.S Department of Health and Human Services, Food and Drug Administration, Accidental Radioactive Contamination of Human Food and Animal Feeds: Recommendations for State and Local Agencies, Center for Devices and Radiological Health, August 13, 1998, http://www.fda/cdrh



#### **Actinides in Food**

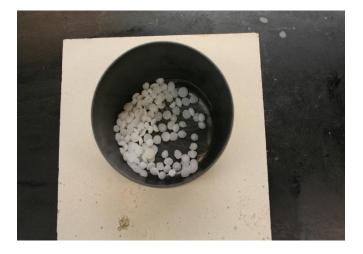
FLUOR DANIEL . NORTHROP GRUM

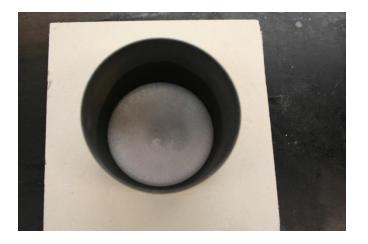





#### **Rapid Furnace Heating of Food Aliquots**










### **Rapid Sodium Hydroxide Fusion**





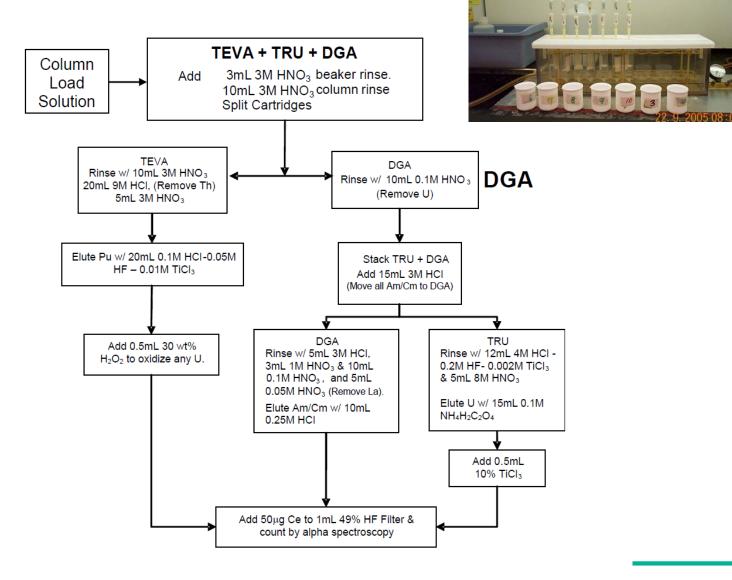






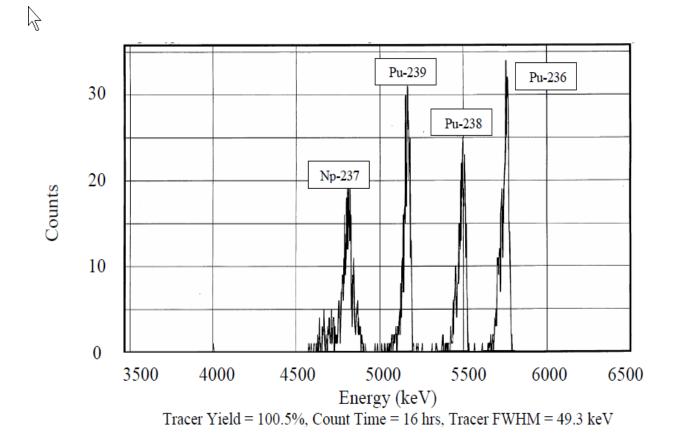
### **Preconcentration Steps**





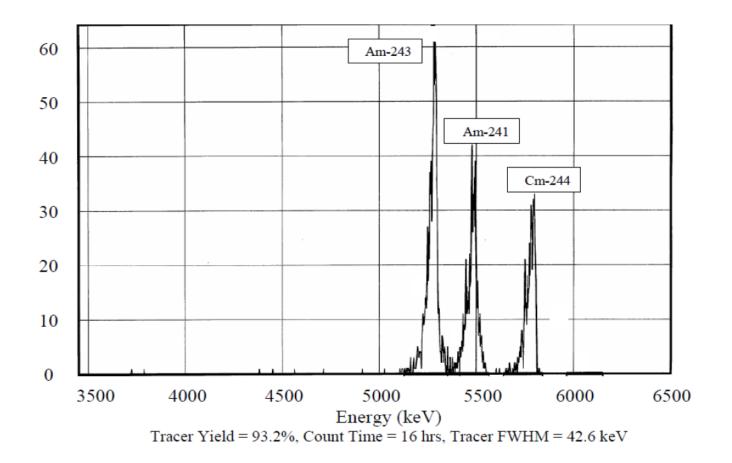




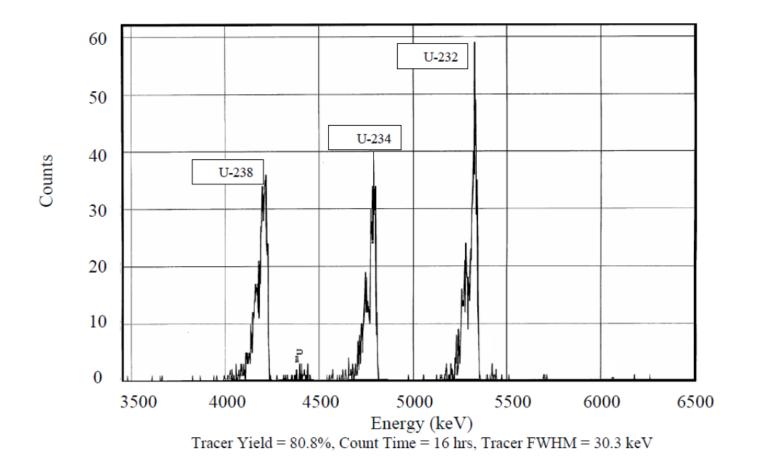

### **Rapid Column Separation**






#### Pu and Np Alpha Spectra Food Sample






#### Am and Cm Alpha Spectra Food Sample





#### **U Isotope Alpha Spectra Food Sample**





| Reference Number          | MS510                                                                              |
|---------------------------|------------------------------------------------------------------------------------|
| Analytes                  | Actinides, Cm, Am, Pu, U                                                           |
| Matrix                    | Soil, Emergency Response Methods                                                   |
| Authors                   | Maxwell, S.L., Culligan, B.K., Noyes, G.W.                                         |
| Title                     | Rapid separation method for actinides in emergency soil samples                    |
| Journal                   | Radiochimica Acta                                                                  |
| Year                      | 2010                                                                               |
| Reference                 | Vol. 98, No. 12, pp. 793-800                                                       |
| Detectors                 | Alpha-spec                                                                         |
| Resins                    | UTEVA Resin, TRU Resin, DGA Resin                                                  |
| URL                       | http://www.oldenbourg-<br>link.com/doi/abs/10.1524/ract.2010.1785?journalCode=ract |
| Digital Object Identifier | 10.1524/ract.2010.1785                                                             |



| Reference Number          | MS112                                                      |
|---------------------------|------------------------------------------------------------|
| Analytes                  | Actinides, Pu, Np, Am, Cm, U                               |
| Matrix                    | Food, Emergency Response Methods                           |
| Authors                   | Maxwell, S.L., Culligan, B.K., Kelsey-Wall, A., Shaw, P.J. |
| Title                     | Rapid determination of actinides in emergency food samples |
| Journal                   | Journal of Radioanalytical and Nuclear Chemistry           |
| Year                      | 2012                                                       |
| Reference                 | Vol. 292, No. 1, pp. 339-347                               |
| Detectors                 | Alpha-spec                                                 |
| Resins                    | TEVA Resin, TRU Resin, DGA Resin                           |
| URL                       | http://www.springerlink.com/content/qj242h7q7442j252/      |
| Digital Object Identifier | 10.1007/s10967-011-1411-5                                  |



| Reference Number          | MS212                                                                                |
|---------------------------|--------------------------------------------------------------------------------------|
| Analytes                  | Ra                                                                                   |
| Matrix                    | Vegetation, Air Filters, Brick, Concrete, Soil, Water, Emergency<br>Response Methods |
| Authors                   | Maxwell, S.L., Culligan, B.K.                                                        |
| Title                     | Rapid determination of 226Ra in environmental samples                                |
| Journal                   | Journal of Radioanalytical and Nuclear Chemistry                                     |
| Year                      | 2012                                                                                 |
| Reference                 | Online 03 February 2012                                                              |
| Detectors                 | Alpha-spec                                                                           |
| Resins                    | Cation Exchange Resin, Sr Resin, Ln Resin                                            |
| URL                       | http://www.springerlink.com/content/c8184647k630r1k8/                                |
| Digital Object Identifier | 10.1007/s10967-012-1627-z                                                            |



| Reference Number          | MS111                                                                                             |
|---------------------------|---------------------------------------------------------------------------------------------------|
| Analytes                  | Actinides, Pu, Np, Am, Cm, U                                                                      |
| Matrix                    | Concrete, Brick, Emergency Response Methods                                                       |
| Authors                   | Maxwell, S.L., Culligan, B.K., Kelsey-Wall, A., Shaw, P.J.                                        |
| Title                     | Rapid radiochemical method for determination of actinides in emergency concrete and brick samples |
| Journal                   | Analytica Chimica Acta                                                                            |
| Year                      | 2011                                                                                              |
| Reference                 | Vol. 701, Issue 1, pp. 112-118                                                                    |
| Detectors                 | Alpha-spec                                                                                        |
| Resins                    | TEVA Resin, DGA Resin, TRU Resin                                                                  |
| URL                       | http://www.sciencedirect.com/science/article/pii/S00032670<br>1100780X                            |
| Digital Object Identifier | 10.1016/j.aca.2011.06.011                                                                         |



| Reference Number          | MS210                                                                  |
|---------------------------|------------------------------------------------------------------------|
| Analytes                  | Actinides, Sr, U, Pu, Am, Cm, Np, Th                                   |
| Matrix                    | Vegetation, Emergency Response Methods                                 |
| Authors                   | Maxwell, S.L., Culligan, B.K., Noyes, G.W.                             |
| Title                     | Rapid Separation of actinides and radiostrontium in vegetation samples |
| Journal                   | Journal of Radioanalytical and Nuclear Chemistry                       |
| Year                      | 2010                                                                   |
| Reference                 | Vol. 286, No. 1, pp. 273-282                                           |
| Detectors                 | Alpha-spec, GPC                                                        |
| Resins                    | TEVA Resin, TRU Resin, Sr Resin                                        |
| URL                       | http://www.springerlink.com/content/b424421j7n198186/                  |
| Digital Object Identifier | 10.1007/s10967-010-0653-y                                              |



| Reference Number | US110                                                                                                                                  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Analytes         | U, Pu, Am, Sr, Ra                                                                                                                      |
| Matrix           | Water, Emergency Response Methods                                                                                                      |
| Authors          | United States Environmental Protection Agency                                                                                          |
| Title            | Rapid Radiochemical Methods for Selected Radionuclides in<br>Water for Environmental Restoration Following Homeland<br>Security Events |
| Journal          | EPA 402-R-10-001                                                                                                                       |
| Year             | 2010                                                                                                                                   |
| Reference        | EPA 402-R-10-001                                                                                                                       |
| Detectors        | Alpha-spec, gas flow proportional                                                                                                      |
| Resins           | TRU Resin, UTEVA Resin, Diphonix Resin, MnO2 Resin, Sr<br>Resin                                                                        |
| URL              | http://www.epa.gov/narel/reports/Rapid_Radiochemical_Me<br>thods_In_Water_with_cover_06-24-10.pdf                                      |

