

Rapid Preconcentration of Ra-226 in Hydraulic Fracturing Wastewater Samples for Gamma Spectrometry Assay

Sherrod L. Maxwell Senior Fellow Scientist

61st Annual Radiobioassay and Radiochemical Measurements Conference October 26, 2015

Co-authors: Dr. Dan McAlister, PG Research Dr. Richard Warren, SRNS Brian Culligan, SRNS

- Need for rapid method to preconcentrate Ra-226 in hydraulic fracturing samples
 - Lower MDA
 - Rapid processing
- Challenges
 - Hard to collect Ra-226
 - High levels of dissolved solids: Ca, Ba, Sr, Mg, Na, K, etc.
 - Interference of U-235 on Ra-226 186 keV gamma ray
 - Waiting on Ra-226 progeny hurts turnaround times
- Wanted to use modification of SRNS methods for seawater to help solve the analytical issues

Literature

- A. Nelson et al, Matrix Complications in the Determination of Radium Levels in Hydraulic Fracturing Flowback Water from Marcellus Shale *Environ. Sci. Technol. Lett.*, 2014, *1* (3), pp 204–208
 - very low chemical yields using a wide array of analytical approaches
 - sample processing problems associated with high levels of dissolved solids
 - 20g/L Ca, 10 g/L Ba, 10 g/L Sr
 - "alkaline earth nightmare"
 - Direct gamma spectrometry (*precipitation problems*)
 - using agar/heating to prevent precipitation of ultrafine particulate matter
 - ~*80 pCi/L MDA*
 - reliance on assumption U-235 is not present

Literature

- T. Zhang et al, Analysis of Radium-226 in High Salinity Wastewater from Unconventional Gas Extraction by Inductively Coupled Plasma-Mass Spectrometry *Environ. Sci. Technol.*, 2015, 49 (5), pp 2969–2976
 - Need to remove isobaric interferences Ba + Sr using small amount of Sr Resin
 - Sr Resin ability to remove Ba can be easily exceeded with these samples
 - Some residual Ba noted in high Ba samples
 - Goal: 100 pCi/L MDA
 - No tracer noted!

	MSW composition (mg/L)						
sample	Na	Ca	Ba	Sr	TDS		
S1	11,500	3,440	1,060	808	28,500		
S2	23,000	6,880	2,120	1,620	57,000		
S 3	46,000	13,760	4,230	3,230	114,000		
S4	69,000	20,640	6,360	4,850	171,000		
S 5	11,500	3,440	1,060	808	28,500		
S6	46,000	13,760	4,240	3,230	114,000		
S 7	69,000	20,640	6,360	4,850	171,000		

What did not work for Ra-226...

- Calcium phosphate precipitation
 - 100 ml simulant might results in 80 ml ppt
- Direct barium sulfate precipitation
 - Nelson et al called "intractable"
- MnO₂ ppt (high Ba...)
- Iron hydroxide
- Nelson et al covered all this and more....

Got an idea....

- High Ca level is a major component in the "nightmare"
- Difficult to separate large amounts of alkaline earth metals
- Tried everything but there was one option left...

 Contacted Dan McAlister, PG Research, and told him what I was thinking.....

Breakthrough!

- Calcium fluoride CaF₂ 5.3×10⁻⁹
- Strontium fluoride SrF_2 2.5×10⁻⁹
- Magnesium fluoride MgF_2 3.7×10⁻⁸
- Barium fluoride BaF_2 1.0×10⁻⁶
- Let's acidify to 1.5M HCI, add HF to try to remove Ca and test...
- Then precipitate Ra/Ba sulfate with ammonium sulfate/ 10% ethanol
- Ca/some of Sr/Mg removed and 80-90% Ba/Ra chemical yield

- Initially 500 ml polythylene bottle, BaSO₄ suspension
 - Hard to control/settled
- 250 ml Nalgene bottle with centrifuging (Dan McAlister)
 - Reproducible, even layer with varying thicknesses
- Used 356 keV gamma ray for Ba-133 tracer recovery
- Used Ba-133 81 keV gamma ray correlation with 186 keV Ra-226 gamma ray to correct for geometry/mass attenuation
 - Plot of 81keV efficiency vs. 186 keV gamma ray efficiency
 - Minor correction also in 356 keV Ba-133 from 81 keV as well (if needed)
 - *low abundance gamma rays (~0.2%) Ra-226, Ra-224, Ra-223 near 81 keV so we use enough Ba-133 to minimize any impact*
- What about U-235??

U-235 Gone...

- U removed with CaF_2 (at high levels) regardless for U⁺⁴ and U⁺⁶
- H_2O_2 added initially and all water rinses to ensure U⁺⁶
 - Additional U removal as U⁺⁶

• U removed 99.9%++

- 185.715 keV 57.0 % abundance
- Ra-226
 - 186.211 keV 3.64 % abundance
- *Ba-133*
 - 80.9979 keV 32.9 % *abundance*
 - 356.013 keV 62.05 % *abundance*

Not in simulant; Ce or Ca only

Rapid Preconcentration Method for Ra-226

Calcium + U/Th Removal

Discard CaF₂

Transfer supernate (Ra/Ba) to new tube

Precipitate Ra/Ba

Ammonium sulfate + ~10% ethanol H_2O_2 and water rinses –ensure no U-235

Transfer to 250 ml Bottle and Centrifuge

Flat BaSO₄ layer from 450 ml simulant

Efficiency Plot of Ra-226 vs Ba-133 (81 keV)

Ba-133 Eff. (81 keV)

Also plotted as $y = 0.0327 \ln(x) + 0.2156$

Ra-226 in Simulant Measurements

	Simulant Aliquot	U-235 Added	Count Time	Ba-133 Yield	Ra-226 Added	Ra-226 Measured	Ra-226 Measured	Bias
	(ml)	(1388 pCi)	(min)	(%)	(pCi)	(pCi)	(pCi/L)	(%)
1	200	Yes	960	83.5	25.4	25.8	129.0	1.6
2	400	No	720	90.3	634.5	622.0	1555.0	-2.0
3	450	No	720	89.1	634.5	620.2	1378.2	-2.3
4	450	No	720	87.3	31.7	42.5	94.4	34.1
5	450	No	720	86.3	20.0	20.4	45.3	2.0
6	200	No	960	83.9	25.4	27.9	139.5	9.8
8	450	No	960	80.6	126.9	117.9	262.0	-7.1
9	900	No	960	82.0	126.9	118.2	131.3	-6.9
10	1800	Yes	960	71.2	126.9	138.8	77.1	9.4
			Avg.	83.8				4.3
			SD	5.71				12.7

Germanium Detector, 40% Relative Efficiency

- Remove Ca
- Remove U-235
- Precipitate Ra/Ba to preconcentrate Ra-226 (50-100x)
- Utilize Ba-133 tracer (81 keV and 356 keV)
- Eliminate need for mass attenuation curve
 - Variable Ba content drives size of precipitate
- No drying of samples
- No column work (Ra-226)
- Look at options to collect U/Th for assay

- U/Th by gamma spectrometry
 - Th-229 tracer for both? (U-232 has low gamma ray abundance)
 - Fe/Ti hydroxide, water rinse, add 1 ml 12M HCl, dissolves in small volume
 - Th-229 183.93 keV (0.14%) vs. U-235 185.72 keV (57%)
 - If any resolution problems...we can separate U/Th using LaF₃
 - U^{+6} in supernate, Th^{+4} in ppt . (HNO₃-H₃BO₃)
 - Homogeneous liquid geometry: 200 ml simulant to 10 ml
- U/Th by alpha spectrometry
 - U-232/Th-229 tracers
 - Fe/Ti hydroxide, water rinse, add HCI, LaF₃ (removes Fe/Ti)
 - Redissolve LaF₃ in HNO₃-H₃BO₃ for separation
 - Separate using TEVA + TRU Resin

Rapid Preconcentration Method for U/Th

Can process U/Th together for alpha spectrometry or separate during LaF_3 step for gamma assay.

Thorium Tracer Yield

	Sample Aliquot	Th-229 Yield	Matrix	U-238
	(ml)	(%)	Ca/Ba/Sr (g/L)	% Removal
1	200	98.8	12.5/6.25/6.25	>99.5%
2	200	100.6	12.5/6.25/6.25	>99.5%
3	200	99.2	12.5/6.25/6.25	>99.5%
4	200	90.8	12.5/6.25/6.25	>99.5%
5	200	97.7	12.5/6.25/6.25	>99.5%
6	200	88.5	12.5/6.25/6.25	>99.5%
	Avg.	95.9		
	SD	5.0		

TRU Resin, 16 hour count, U-238 added to test U Removal

Summary

- Rapid method to preconcentrate Ra-226 developed
 - Removal of Ca is key
 - Up to 1.8L simulant tested
 - U-235 removed
 - 2 hours or less to prepare
- Geometry attenuation correction applied using Ba-133 (81 keV)
 - To Ra-226 based on plot of Ba-133 efficiency (81 keV) vs Ra-226 efficiency (186 keV)
 - And minor yield adjustment to Ba (356 keV) via 81 keV/356 keV efficiency plot
- Difficult matrix
 - 50-100 x preconcentration
 - MDA <20 pCi/L achieved</p>
- U/Th may be preconcentrated for alpha or gamma spectrometry