Options for Separation and Measurement of ⁸⁹Sr/⁹⁰Sr

Daniel McAlister, Ph.D. Eichrom Technologies, LLC Eichrom Workshop, May 22, 2018

	Properties of Selected Nuclides									
	Decay Detector Su					uitable for Measurement				
	Nuclide	Half-Life	Mode	Energy	GFPC	LSC	Cerenkov	MS/AES	Gamma	
	⁸² Sr	25.35 days	3							
	⁸² Rb	1.25 min	β^+	β^+ mean = 1479 keV γ = 511 keV (190.4%)						
Yield	⁸⁵ Sr	64.849 days	ε/γ	γ = 514 keV (96%)	No	Yes	No	No	Yes	
tracers	⁸⁸ Sr	Stab	le		No	No	No	Yes	No	
apalytac	⁸⁹ Sr	50.563 days	β^{-}	eta_{max} = 1500 keV eta_{mean} = 587 keV	Yes	Yes	Yes	No	No	
andiytes	⁹⁰ Sr	28.79 years	β^{-}	β_{max} = 546 keV β_{mean} = 196 keV	Yes	Yes	No	Yes	No	
	⁹⁰ Y	64 hours	β^{-}	eta_{max} = 2280 keV eta_{mean} = 934 keV	Yes	Yes	Yes	No	No	

Methods and Application Notes

Sample Extraction / Dissolution

Matrix removal / Concentration (ppt, IX)

Sr Resin separation to isolate pure Sr fraction

Counting source preparation

Detailed instructions for ⁸⁹Sr/⁹⁰Sr discrimination

eichrom	Options for ⁸⁹ Sr and ⁹⁰ Sr		
	Determination		
AN-1624-10	Determination		

Factors

Quality Objectives

Ratio ⁸⁹Sr/⁹⁰Sr

Urgency

Budget

Available Equipment

Uptake on Sr Resin

Why is ⁸⁹Sr/⁹⁰Sr Challenging?

Decay of ⁸⁹Sr/⁹⁰Sr + Ingrowth ⁹⁰Y

Pure Beta emitters

⁹⁰Y decays into stable ⁹⁰Zr

⁸⁹Sr decays into stable ⁸⁹Y

Beta/Positron Decay

https://en.wikipedia.org/wiki/Beta_decay

Beta emission accompanied by electron antineutrino.

Energy distributed between electron and neutrino.

Neutrinos have very little interaction with matter (only weak force).

Measurement yields spectrum of electron energies with characteristic β_{max}^{-} .

Measurement Techniques

IAEA/AQ/27, "Rapid Simultaneous Determination of 89Sr and 90Sr in Milk: a Procedure Using Cherenkov and Scintillation Counting," IAEA Analytical Quality in Nuclear Applications Series No. 27.

LSC Measurement

Pros:

 4π geometry High Efficiency <u>Cons:</u> Requires Cocktail Quenching Luminescence Little Selectivity Destructive

Cherenkov Radiation

The speed of light in a vacuum is a universal constant (c).

The speed at which light propagates in water is only ~0.75c. (function of refractive index)

Matter may be accelerated beyond this speed (>0.75c, <c) during nuclear reactions.

Cherenkov radiation results when a charged particle, most commonly an **electron**, travels through a dielectric medium with a speed greater than that at which light propagates in the same medium.

Cherenkov Spectra

Pros:No cocktail = No Quench
No luminescenceNon-destructiveSelective for high energy β -/ β +.(Measure ⁸⁹Sr/⁹⁰Y, reject ⁹⁰Sr)

<u>Cons:</u> Lower Efficiency than LSC

IAEA/AQ/27, "Rapid Simultaneous Determination of 89Sr and 90Sr in Milk: a Procedure Using Cherenkov and Scintillation Counting," IAEA Analytical Quality in Nuclear Applications Series No. 27.

Gas Flow Proportional Counting

<u>Pros:</u> Low background Simultaneous counting Non-destructive

<u>Cons</u>: Efficiency (2π geometry) Low selectivity (reject alpha)

http://www.canberra.com/products/radiochemistry_lab/alpha-beta-counters.asp

ICP-MS, ICP-AES, MP-AES, AA

- Screen samples for native Sr content.
- Yield tracer by stable Sr.
- ⁹⁰Sr (MS), relatively high levels.

Method Options

Following Matrix Removal/Sr Resin Isolation of Sr:

- 1) MS (⁹⁰Sr Only)
- 2) Two count methods
 - Different counting techniques
 - Same technique with period of ingrowth (⁹⁰Y)
- 3) Count, ingrowth, Separate ⁹⁰Y

Mass Spectrometry

- ⁹⁰Sr Only, or ⁸⁸Sr yield monitor/native content.
- Separation: Concentrate, remove matrix + ⁹⁰Zr isobar.
- Limited to higher activity samples (half-life 28.79 yrs).
- Couple with radiometric detection for ⁸⁹Sr???

Feuerstein J, Boulyga S.F., Galler P., Stingeder G., Prohaska T., "Determination of ⁹⁰Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS)." *J. Environ. Radioact.* 11, 1764-9 (2008).

Cherenkov/LSC

Count ⁸⁹Sr immediately by Cherenkov (Limit impact of ⁹⁰Y ingrowth) Add Cocktail. Count ^{89/90}Sr by LSC 1 day, Bias: <20% ⁸⁹Sr and <40% ⁹⁰Sr

Separate Sr

Ratios of ⁸⁹Sr/⁹⁰Sr activity of up to 35.

Fastest route to ⁸⁹Sr and ⁹⁰Sr.

IAEA/AQ/27, "Rapid Simultaneous Determination of 89Sr and 90Sr in Milk: a Procedure Using Cherenkov and Scintillation Counting," IAEA Analytical Quality in Nuclear Applications Series No. 27.

2-Count Methods

Prepare Gas Flow Planchet or LSC source.

Count immediately for total ^{89/90}Sr (Limit impact of ⁹⁰Y ingrowth)

Wait 7-14 days for ⁹⁰Y Ingrowth (Maximum ⁹⁰Y Ingrowth/Minimum ⁸⁹Sr decay)

Separate Sr
Second Count. Solve equations to calculate ⁸⁹Sr and ⁹⁰Sr. (Appendix B)
Economical. Verify ⁹⁰Sr by ⁹⁰Y. Difficult to measure low ratios of ⁸⁹Sr.

EPA 402-R-10-001d, "Rapid Radiochemical Method for Total Radiostrontium (Sr-90) In Water for Environmental Remediation Following Homeland Security Events," October 2011.

Cherenkov/Cherenkov

Separate Sr

Count ⁸⁹Sr immediately by Cherenkov. (Limit impact of ⁹⁰Y ingrowth) Wait 7-14 days for ⁹⁰Y Ingrowth. Acidify sample to 3-8 M HNO₃. Separate ⁹⁰Y. Count by Cherenkov.

Rugged. Best ⁸⁹Sr/⁹⁰Sr discrimination. Minimizes waste (no cocktail).

Banavali, A. D. et al. "Strontium-89, 90 Analysis by Eichrom Column Chemistry and Cherenkov Counting". 38th Annual Conference on Bioassay Analytical and Environmental Radiochemistry. Santa Fe, NM. November 1992.

GFPC/Ingrowth-Separation/GFPC

Separate Sr

Prepare Gas Flow Planchet. Count immediately for total ^{89/90}Sr. (Limit impact of ⁹⁰Y ingrowth)

Wait 7-14 days for ⁹⁰Y Ingrowth

Dissolve sample with $3-8 \text{ M HNO}_3$.

<u>Separate ⁹⁰Y</u>. Prepare planchet and count ⁹⁰Y.

Rugged. Good ⁸⁹Sr/⁹⁰Sr discrimination. Often lowest background method.

ASTM D5811-08, "Standard Test Method for Strontium-90 in Water."

Uptake on Sr Resin

Uptake on DGA Resin, Normal

Conclusions

- The are many options for the discrimination of ⁸⁹Sr and ⁹⁰Sr

- ⁸⁹Sr/⁹⁰Sr discrimination may be achieved by selective measurement techniques, ingrowth of ⁹⁰Y, and/or separation of ingrown ⁹⁰Y.

- The method choice must take into account factors such as:
 - Quality Objectives
 - Ratio ⁸⁹Sr/⁹⁰Sr
 - Urgency
 - Budget
 - Available Equipment

Questions???