

DGA, Beryllium and the Ln Series of Resins, an applications update

RRMC October 25, 2005

Outline

- DGA Resin
 - Formats- Branched and Normal
 - Fe-55/Eu-154
 - Radium/Actinium
 - Actinides in Soil (presented by Sherrod Maxwell)
- Ln Series of Resins
 - Lu-177
- Beryllium Resin
 - Be metal by ICP-AES (Chronic Beryllium Disease)

<u>Diglycolamide</u> (DGA) Resin

Extractant:

N,N,N',N'-tetraoctyldiglycolamide- (DGA Resin, Normal or TN-DGA)

N,*N*,*N*',*N*'-tetrakis-2-ethylhexyldiglycolamide (DGA Resin, Branched or TB-DGA)

Extraction Equilibrium:

$$M^{3+} + 3NO_3 + 3E \longrightarrow \overline{M(NO_3)_3} E_3$$

 $M = Ln, An$

DGA Reference

NOVEL EXTRACTION CHROMATOGRAPHIC RESINS BASED ON TETRAALKYLDIGLYCOLAMIDES: CHARACTERIZATION AND POTENTIAL APPLICATIONS

E. P. Horwitz, D. R. McAlister, A. H. Bond and R. E. Barrans, Jr. Solvent Extr. Ion Exch. <u>23</u>, 319-344 (2005)

Comparison of TN-DGA and TB-DGA Resins

	Elution of selected cations on						
		Т	N-DGA 1	cesin.			
		Percent of Total					
Fraction	Bed	Ba(II)	Cd(II)	Cu(II)	Fe(III)	Y(III)	Zr(IV)
	Vols.						
Load	20	90	93	95	92	0	0.9
(4 M HNO ₃))						
Rinse	2.0	10	7	3.5	7	0	0.2
(0.5 M	2.0	< 0.1	< 0.1	0.4	0.6	0	0
HNO ₃)							
	2.0	< 0.1	0	0.4	< .1	0	0
	2.0	0	0	0.4	0.4	0	0
	2.0	0	0	< 0.1	0	0	0
Strip	2.0	0	0	0	0	71	5
(0.01 M	2.0	0	0	0	0	27	10
HCl)							
	2.0	0	0	0	0	1	11
	2.0	0	0	0	0	0.7	10
	2.0	0	0	0	0	0.3	10
Column be	d volum	e = 0.5	mL, flo	w rate	= 0.5 m	L/minut	e for

load and

0.25 mL/minute for wash and strip

Eu-154 interference with Fe-55

- West Valley Nuclear Services Company
 - Spent nuclear fuel analysis
- Craig Maddigan- Spring 2004 Users' Group
- Fe-55 main photon at 5.9 KeV- Eu-154 has an 8% probable photon at 6.1 KeV
 - 8 M nitric acid load on TRU Resin Fe and Eu retained
 - TRU+DGA, Branched for 2 M nitric acid strip
 - Eu retained, Fe stripped

eichrom

Ac-228 on DGA Resin (Maxwell, Spring '05)

- Ln Resin (2 mL) + DGA-Normal (2mL) stacked
 - Ln resin (U,Th removal) and DGA (Ac-228 retention)
 - loaded 12 mL 4 M HCI 1.5%H2O2 strip solution from MnO2 resin on LN-DGA
 - collect load + 5 mL 4M HCL rinse for Ra-226
 - 10 mL 4M HCL rinse-discard
 - Save LN Resin
 - Strip Ac-228 from DGA with 10 mL 0.5M HCI
 - 100 uL Ce and 1 mL con. HF

Ra-228 in Groundwater

%	6 Recovery	% Recovery	
	Ba-133	Ra-228	
BLK	90%	N/A	
LCS (spiked DI H2O)	95%	99.7%	
GRNDWATER smp	100%	N/A	
GRNDWATER smp	89%	N/A	
GRNDWATER smp	97%	N/A	
GRNDWATER SPK	95%	101.2%	
Avg =	94%	100.4%	

1 L samples

Ba-133=1040 pCi; Ra-226 spk= 5 pCi: Ra-228 spk= 20 pCi waited 36 hr/used Ln-DGA

expertise. communent.

Lu-177 Reference

A Process For The Separation of ¹⁷⁷Lu From Neutron Irradiated ¹⁷⁷Yb Targets

E.P. Horwitz, D.R. McAlister, A.H. Bond, R.E. Barrans, Jr., and J. M. Williamson

Appl. Radiat. Isotopes <u>63</u>, 23-36 (2005)

Be program at Y-12 National Security Complex

- Controlled by US Dept. of Energy's Chronic Beryllium Disease Prevention Program
 - 10 CFR Part 850
 - Promulgated in 1999 to protect DOE workers from CBD
 - Requires Be surface and air monitoring to determine health risk
 - Rule greatly increased the need for Be analysis in the DOE complex
 - Current analytical methods include ICPOES and GFAA

The Problem? (Darrin Mann Users' Group '05)

- The Internal Standard (IS) works great correcting interferences to a point:
 - High Concentrations of Interfering Elements
 - Some elements are very spectral rich
 - Uranium
 - » Shift depends on enrichment
 - Some elements overlap spectrally
 - Vanadium, Cesium and Zirconium are examples
 - Dilution not useful for these elements

Possible Solutions

- Dilution
 - May lose Be signal
 - Increase in MDL
- Run samples by ICPMS
 - Expensive (relative to an OES)
 - Not as rugged as OES (can't handle 500 samples/day)
- Remove/Concentrate Be

eichrom Uptake of Selected Elements on Beryllium Resin

(also referred to as Dipex ® Resin)

Several EXC materials evaluated

Dipex Extractant offered the most promising beryllium retention characteristics

ЮH

eichrom

eichrom

Y-12 Method using Eichrom Be Resin

- Elegantly simple
- Usually use 5 ml of sample left over from ICPOES analysis
- Adjust sample pH to between 1-2 with 4 M Sodium Acetate
- 2% Crystal Violet used as indicator (3-4 drops)
- Load sample onto Be cartridge (usually 10 mL) and pass through at 2 ml/min
- Rinse cartridge with 10 ml of 0.2 M HNO₃ at 2 ml/min
- Elute Be with 10 ml of 4M HNO_3 at < 1 ml/min
- Sample can be re-run within a few hours.

Separation of Be from Large Amounts of Interferences

Metal Ion	Dipex [®] capacity	mg to reduce	
Wietar Ion	mg/2 mL bed	Be yeild to 90% ^c	
Cr(VI)	N/A	> 100	
Mo(VI)	N/A	25	
U(VI)	102.6 ^a	25	
Ti(IV)	12.5 ^b	7.5	
Th(IV)	60.6 ^a	10	
Fe(III)	22.6 ^a	10	
Pb(II)	53.8 ^b	50	
Ca(II)	10.4^{a}	>100	
Be(II)	0.9^{b}	0.5	

Capacity of Dipex[®] Resin for Selected Metal Ions

Separation of Be from Large Amounts of Interferences

More Difficult Matrices

- 100 mg Fe
- + 25 mg Cr
- + 20 mg Ni
- + 25 mg Mo
- + 25 mg V
- + 15 mg Ti
- + 7.5 mg Ce

- Requires multiple cartridges
- Oxalic acid useful (0.1 M)
- 85% Ave. Be recovery
 - 12 mL anion column +
 - 2 mL LN cartridge +
 - 2 mL Beryllium cartridge

Beryllium Reference

Separation of Beryllium From Selected Elements Using Dipex ® Extraction Chromatographic Resin

E. P. Horwitz and D. R. McAlister

Solvent Ext. Ion Exchange. 23, 611-629 (2005)

A second paper is in press in Talanta

Conclusion

- More and more metal separations can be performed more efficiently using different EXC Resin
- Phil Horwitz and PGRF are still firing on all cylinders
- Share with us your needs and together we will share success