

Rapid Method for Actinides and Sr-89/90 in Soil

Sherrod L. Maxwell, Brian K. Culligan and Gary W. Noyes Savannah River Nuclear Solutions Aiken, SC October 26, 2009

55th Radiobioassay and Radiochemical Measurements Conference

San Antonio, Texas

Recent Advances – SRS Environmental Bioassay Lab

- Actinides in NRIP 2009 air filters and soil (3-4 hrs)
- Adapted rapid methods to ICP-MS
 - ICP-MS compatible resin strip solutions
 - hybrid approach

Implement rapid bioassay method for routine work

- Plus 24 hour screening using NRIP urine method
- Added Sr-89/90 to actinides in soil method
 - Future potential applications
 - vegetation/foodstuffs
 - fecal samples

Background

- Need for faster methods for Homeland Security
 - NRIP 2008 actinides and Sr-90 in water/urine samples in 3-4 hours
 - Actinides in NRIP soil samples reported in 4-5 hours
- Benefits
 - More efficient routine analytical methods with cost savings
 - Soil
 - Water, urine
- Literature
 - Usually don't find rapid methods for actinides-maybe 24 hours
 - Often complex with 40-80% actinide yields

Recent Literature: Actinides and Sr in Soil

- Wang, J., Chen, I, and Chiu, J.: Sequential isotopic determination of plutonium, thorium, americium, strontium and uranium in environmental and bioassay samples, Applied Radiation and Isotopes, 61, 299 (2004)
 - Leached NRIP soil, air filters, etc
 - Multiple sequential precipitations
 - Anion resin, TRU resin, Chelex 100 resin
 - Evaporation, wet-ashing and electrodeposition
 - Yields: plutonium (60-76%), americium (40-59%), uranium (57-76%), strontium (63-77%)
 - Sr: oxalate precipitation was performed at pH 4.2 on the anion resin rinse solution followed by a Sr Resin separation.

Wang, et al Flow Chart

A Fluor Daniel Partnership

Why not Sr-89/90 with actinides in soil?

- Sr-89/90 with actinides in many of our SRS methods
 - Water, urine
 - Air filters
 - Vegetation, fruit
 - Animal tissue
- Can we add Sr-89/90 to the rapid actinide soil method?
 - LaF₃ precipitation-soil matrix removal
 - How can we get Sr to follow the actinides?

Rapid Soil Methods used at SRS

Actinides in Soil-improvements

- 1-2 gram routine/emergency method
- 5-10 gram routine method
 - Use *lanthanum fluoride* instead of cerium fluoride

La k' < Ce k' on DGA</p>

Remove La more quickly on DGA (1-2 gram samples)

▶ instead of TEVA-SCN

Still need TEVA-SCN for 5-10 gram samples

The Magic of DGA

Source: http://www.eichrom.com/products/info/dga_resin.cfm

NRIP -2009 Soil Turnaround Times

Nuclide	Turnaround Time (Hrs.)		
²³⁸ Pu*	5.4		
²⁴⁰ Pu*	5.4		
²⁴¹ Am	4.4		
238 U	4.1		
²³⁴ U	4.1		

*includes TEVA reprocessing

Can we add Sr-89/90 to this rapid soil method?

Approach

- Rapid sodium hydroxide fusion
- LaF₃ soil matrix removal
- But.....also add Ca and PO₄
 - to enhance Sr recovery across the iron hydroxide precipitation after rapid NaOH fusion
- Add Ca to enhance Sr recovery during LaF₃ precipitation
- Increase nitrate ions in load solution/beaker rinse
 - increase Am/Cm retention on DGA
 - selects against Ca
 - increases U retention on TRU

Increase Total Nitrate – DGA Resin

Horwitz, P., McAlister, D. Bond, A., and Barrans Jr, A. B.: Novel extraction chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications, Solvent Extr. Ion Exch. 23, (3), 319, (2005)

Increase Total Nitrate Some...but not too much

Nuclear Solutions, LLC A Fluor Daniel Partnership_{son}

SRS Soil Sample Preparation

Soil Column Separation (1 – 2 g)

Soil Column Separation (5 g)

Sr Resin Separation

MAPEP 18 Soil- Rapid Fusion

Savannah River Nuclear Solutions, LLC A Fluor Daniel Partnership_{au}

Precipitation after Fusion

Fe(OH)₂ ppt

Lanthanum/Calcium Fluoride Matrix Removal

Ca + La in HCL-HF + TiCl₃

LaF₃ /CaF₂ ppt

Load Solution

Soil work is fun!

Gravity Flow

Column Separation

_TEVA+TRU+DGA

DGA

TEVA -

Column Separation

TRU+DGA (Move Am/Cm to DGA)

Sr Separation

3ml Sr Resin

Load + Rinses

Sr mount with Sr carrier

Routine Flow Rates

Load solution ~ 1 drop per second

Routine Flow Rates

Rinse ~ 2 drops per second

MAPEP 18 Soil Results

				- Refractory
MAPEP 18	Pu-242	Pu-238	Pu-239≁	•
	% Rec	Bq/kg	Bq/kg	
1	102.1	75.6	88.5	
2	107.3	79.8	76.1	
3	117.5	75.7	81.3	
4	106.9	72.3	103.2	
5	90.7	82.9	99.9	
6	83.7	82.1	95.5	
7	108.7	79.9	94.7	
8	100.3	74.3	95.7	
avg	102.2	77.8	91.9	
RSD	10.48	4.96	10.05	and the second
	Reference	72.80	90.1	
	% diff	6.93	1.97	

MAPEP 18 Soil Results

MAPEP 18	Am-243	Am-241	Cm-244
	% Rec	Bq/kg	Bq/kg
1	97.3	114.1	32.9
2	91.2	125.4	30.0
3	93.7	133.1	33.6
4	96.0	117.9	33.5
5	96.3	124.5	37.4
6	86.7	124.1	32.4
7	102.9	118.4	36.0
8	105.8	119.1	31.1
avg	96.2	122.1	33.4
RSD	6.33	4.85	7.20
	Reference	127.20	32.0
	% diff	-4.02	4.25

MAPEP 18 Soil Results

MAPEP 18		U-232	U-234	U-238
		% Rec	Bq/kg	Bq/kg
1		81.4	138.4	146.2
2		81.3	139.9	152.0
3		85.8	136.8	146.2
4		80.8	139.1	148.4
5		85.9	137.3	152.8
6		76.6	141.7	149.5
7		89.9	139.5	146.8
8		90.0	132.5	138.0
	avg	84.0	138.1	147.5
	RSD	5.64	2.00	3.11
		Reference	142	148
		% diff	-2.72	-0.34

MAPEP 18 Sr-90 Results

MAPEP 18	Sr carrier	Sr-90
	% Rec	Bq/kg
1	61.0	484.0
2	61.0	479.0
4	56.6	536.0
5	59.7	480.0
6	60.4	438.0
7	59.1	447.0
avg	60	477.3
RSD	2.8	7.23
	Reference	493.0
	% diff	-3.18

MAPEP 20 Sr-90 Results

MAPEP 20	Sr carrier	Sr-90
	% Rec	Bq/kg
1	70.8	281.9
2	65.7	267.1
3	65.7	270.7
4	70.1	306.7
5	63.8	269.1
6	60.1	265.6
avg	66.0	276.9
RSD	6.0	5.68
	Reference	257.0
	% diff	7.72

Summary

- Rapid soil method
 - Actinides in soil in ~4 hours (emergency)
- New rapid method with actinides and Sr-89/90 together
- Cost savings
 - Estimate-\$60,000 year in labor cost savings for soil samples
 - Eliminates separate Sr-89/90 sample preparation
- Adaptable to ICP-MS
 - Hybrid approach
 - Maxwell III, S.L. and Jones, V.D., Rapid determination of actinides in urine by inductively coupled plasma mass spectrometry and alpha spectrometry: A hybrid approach: Volume 80, Issue 1, 15 November 2009, Pages 143-150
- Adaptable to other difficult matrices

Acknowledgments

Lab technicians

- Shermette Upson, Beth Calhoun, Becky Chavous, Jack Herrington

Chemists

- Brian Culligan, Gary Noyes

