²³⁹Np Generator AN-1619-10 **Summary of Method** A method for the preparation of ²³⁹Np (t_{1/2} = 2.355 days) from ²⁴³Am (t_{1/2} = 7380 years) source material is presented. The method employs 2mL cartridges of UTEVA and DGA resins to obtain high purity ²³⁹Np in small volumes of eluate, while preserving valuable ²⁴³Am material. The source material is adjusted to 4M HNO₃, treated with iron, sulfamic acid and ascorbic acid to fix the Np(IV) oxidation state, and loaded onto stacked 2mL cartridges of UTEVA and DGA resins. ²³⁹Np is retained on UTEVA Resin, while ²⁴³Am is retained on DGA Resin. The ²⁴³Am source is recovered from DGA Resin with a small volume of 0.5M HCl. Following a suitable ingrowth period, the ²⁴³Am can be acidified to 4M HNO₃ and used to produce additional ²³⁹Np. The ²⁴³Am is preserved nearly indefinitely and continuously purified from chemical and radiologic impurities run to run. ²³⁹Np is recovered from UTEVA resin with 0.5M HCl. #### Reagents UTEVA Cartridges (Eichrom UT-R50-S) DGA Cartridges (Eichrom DN-R50-S) 243Am Source Deionized Water HCI HNO₃ Sulfamic Acid Fe carrier (10mg/mL) Ascorbic Acid #### **Equipment** Glass vials for storage of ²⁴³Am. Glass or plastic vials/bottles for collection of ²³⁹Np and waste. 10, 20 or 30mL plastic luer lock syringes Gamma Spectrometry System for measurement of ²³⁹Np and ²⁴³Am. ## ²³⁹Np/²⁴³Am Separation (7) Remove syringe used for load/ rinse and discard. (8) Add clean syringe. (9) Rinse UTEVA/DGA with 10mL 4M HNO₃. (10) Separate UTEVA/DGA. (11) Strip ²³⁹Np from UTEVA with 10mL 0.5M HCl. U T Recovery of ²³⁹Np can be E improved by stripping in ٧ opposite direction of load. (12) Strip ²⁴³Am from DGA with 13mL 0.5M HCl. Save ²⁴³Am D for future use. G ### References HNO₃. 1) McAlister and Horwitz, "Chromatographic Generator Systems for the actinides and natural decay series elements," *Radiochimica Acta*, 99:1-9 (2011).