

Measurement of Radio-isotopic Impurities in Purified Solutions of Ro-226 and Ac-227 Haley Wightman Marc Chattin John Partridge Joe Giaquinto Eichrom Workshop RRMC 10/28/19

Resolution Pub ID: 133929

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

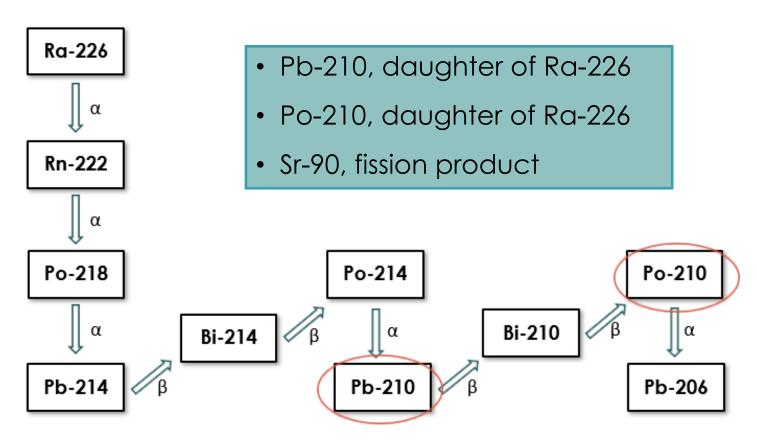
Radio-Isotopic Impurities in Purified Solutions of Ra-226 and Ac-227

- ➢Production of Ac-227 at ORNL
- ≻Radio-isotopic impurities in Ra-226 & Ac-227
- Method development for detection of Sr-90 & Pb-210
 - > Adjustments of separation procedure on Sr resin
 - Develop liquid scintillation protocol for Pb-210
- ➤Method development for detection of Po-210
 - Adjustment of detection methods
 - > Implement separation procedure on Sr resin

Production of Ac-227 at ORNL

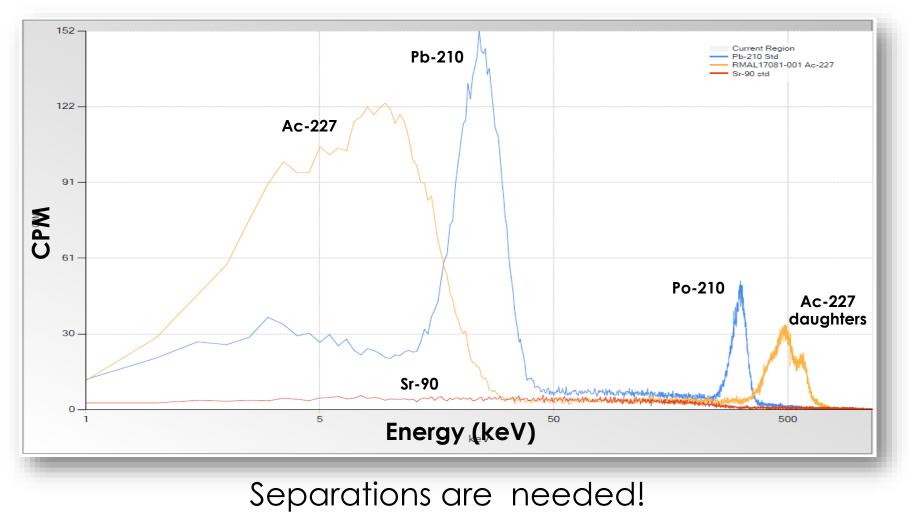
- ORNL has been approved as a qualified supplier of Ac-227 to meet demands of the cancer drug Xofigo[®]
 - Ra-226 targets are prepared from legacy medical devices and then irradiated in the High Flux Isotope Reactor

 The irradiated targets are dissolved and Ac-227 is chemically separated and purified by the Nuclear & Radiochemistry group at ORNL



Radio-Isotopic Impurities

DAK RIDGE


National Laboratory

- To pass Bayer specifications for the COA, isotopic impurities need to be <0.1% activity of specified isotope (Ac-227 or Ra-226)
- RMAL had to develop and qualify methods for Sr-90, Pb-210 & Po-210

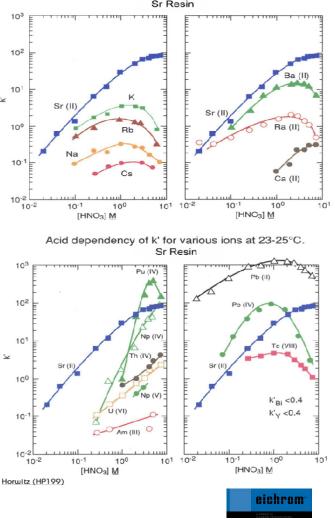
Radio-Isotopic Impurities (cont.)

'Quantify' Pb-210, Sr-90 and Po-210 using liquid scintillation

5

Sr-90 & Pb-210 Initial Separation Procedure

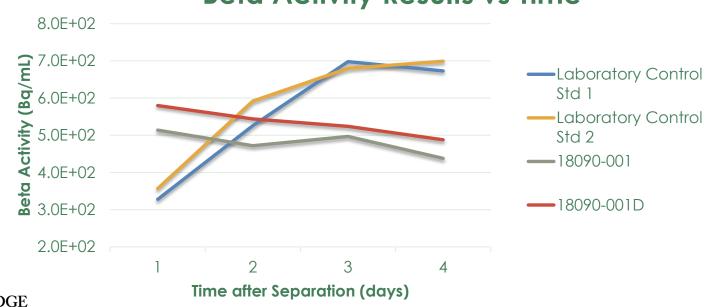
 Modified existing Sr-90 procedure to elute Sr-90 & Pb-210 in one separation Acid dependency of k' for various ions at 23-25°C. Sr Resin


4

Step	Volume + Reagent		
Condition Column	10 mL 8M HNO ₃		
Sample Load to Column	10 mL 8M HNO ₃		
Rinse 1	10 mL 8M HNO ₃		
Rinse 2	5 mL 1M HNO ₃		
Sr Strip	10 mL 0.05 M HNO ₃		
Pb Strip	10 mL 0.05M Ammonium Citrate		
Sr-90 detection = gas flow proportional counting	Pb-210 detection = liquid scintillation counting		

AK RIDGE

National Laboratory


6

Open slide master to edit

Sr-90 & Pb-210 Initial Results

- Elevated Sr-90 results in a Ra-226 batch
- Recycled radium, larger quantities of Ra-228
- Detected Pb-214 and Bi-214 via gamma spec
 - Short-lived daughters of Ra-226

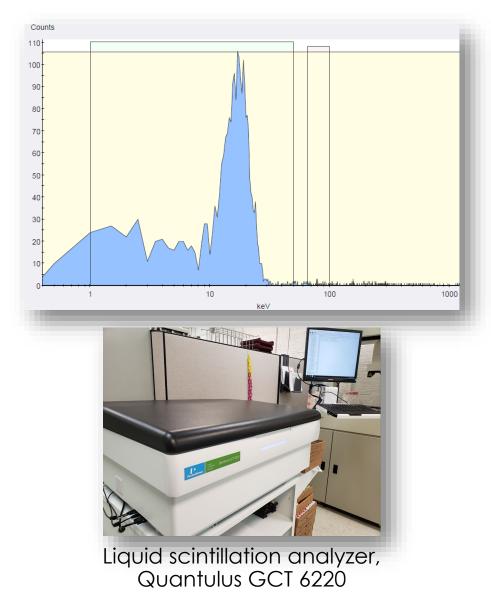
Beta Activity Results vs Time

CAK RIDGE

Open slide master to edit

Modified Sr-90 & Pb-210 Separation Method

Based on communications with Eichrom/Dan McAlister

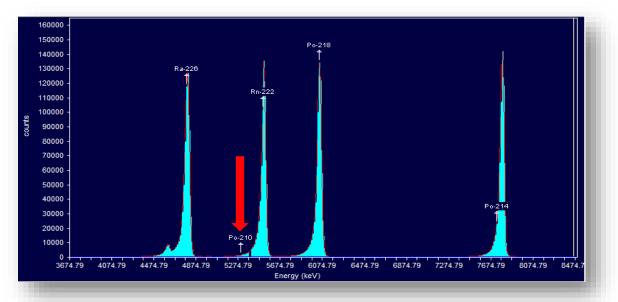

Step	Volume + Reagent		
Condition Column	10 mL 8M HNO ₃		
Sample Load to Column	10 mL 8M HNO ₃		
Rinse 1	5 mL 8M HNO ₃		
Rinse 2	10 mL 3M HNO ₃ -0.05M oxalic acid		
Rinse 3	5 mL 8M HNO ₃		
Rinse 4	5 mL 1M HNO ₃		
Sr Strip	10 mL 0.05 M HNO ₃		
Pb Strip	10 mL 0.05M Ammonium Citrate		
Sr-90 detection = gas flow proportional counting	Pb-210 detection = liquid scintillation counting		

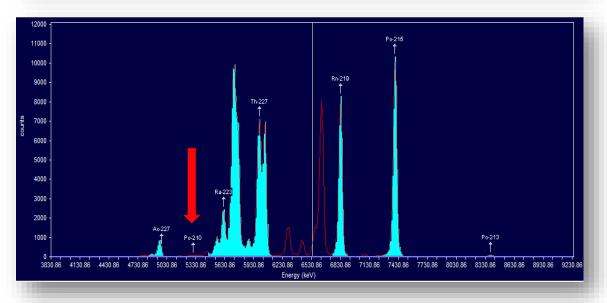
→ Separation procedure currently used for samples

Improvements for Pb-210 Detection

- Developed liquid scintillation protocol for Pb-210 opposed to quantifying via Bi-210 ingrowth
 - Experimentally determined
 Pb-210 efficiency
 - Sample matrix always the same
- Added stable Pb carrier for chemical recovery (0.1mg/mL): ICP-MS

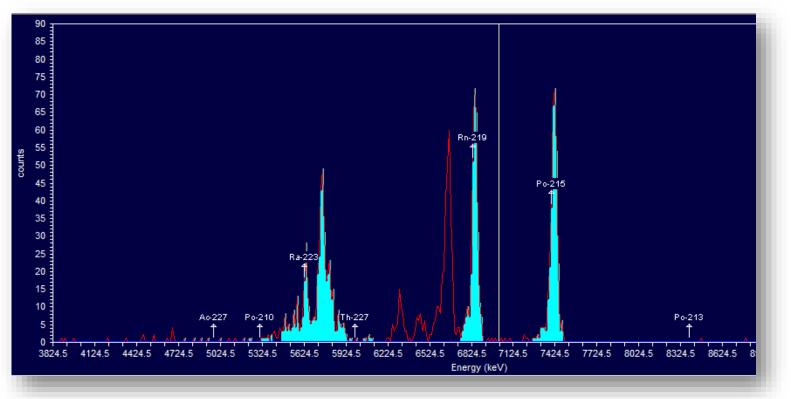
QC Results for Modified Sr-90 and Pb-210 Method


Sample Type	Carrier	% Carrier Recovery	LCS	% LCS Recovery
Ra-226 (N=7)	Stable Sr	88 ± 22	Sr-90	116 ± 12
Ra-226 (N=7)			Pb-210	76 ± 2
Ac-227/225 (N=9)	Stable Sr	90 ± 16	Sr-90	87 ± 9
Ac-227 (N=3)	Stable Pb	94 ± 4	Pb-210	89 ± 20


- RMAL QAP Requirements
 - Carrier: 40-110% yield
 - LCS: ± 25% deviation

Po-210 Method Development

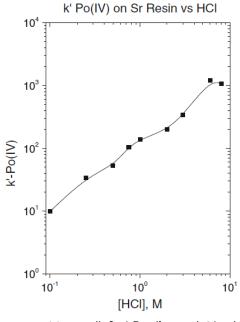
- No method in place
- Desired detection was alpha spectrometry
- Samples were counted as is, <u>no separations</u>



11

Po-210 Method Development (cont.)

Background spectrum one day after Ac-227 sample count

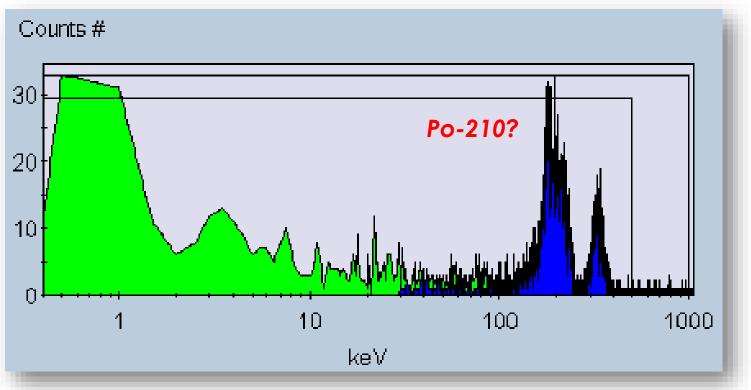

- Background contamination from Rn and daughters
- Alpha recoil contamination

Po-210 Separation Method

• Eichrom procedure for separation of Po-210 on Sr-resin

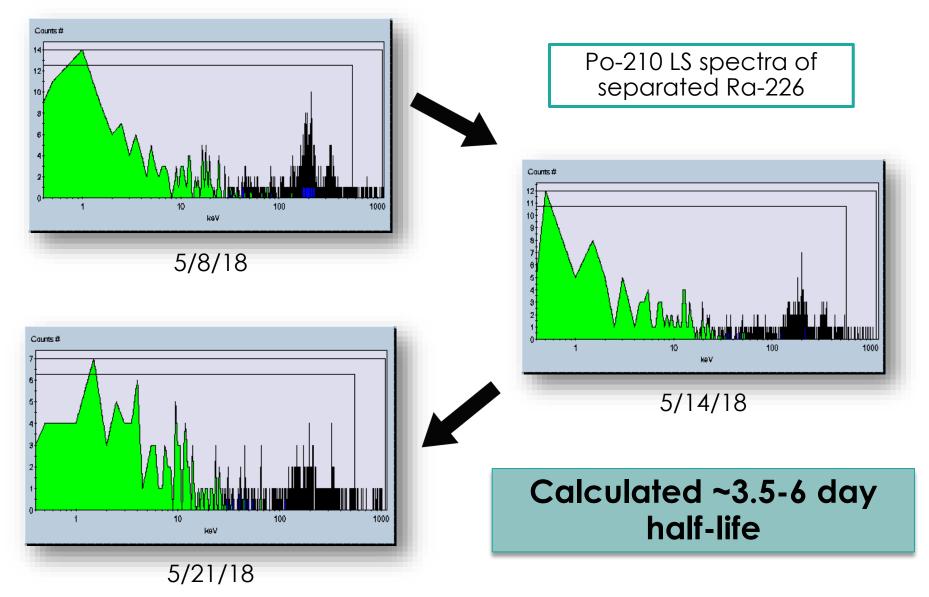
Step	Volume + Reagent	
Condition Column	10 mL 2M HCI	
Sample Load to Column	10 mL 2M HCI	
Rinse 1	5 mL 2M HCI	
Rinse 2	5 mL 2M HCI	
Po Strip	5 mL 1M HN03	
Po Strip	15 mL 0.1M HNO ₃	
Po Strip	5 mL 1M HN03	

Detection Method?


Maxwell, S. J Radioanal. Nucl Chem (2013) 298:1977-1989

- RMAL was not equipped for auto deposition source prep
- Return to original requested analysis: liquid scintillation

Po-210 By Liquid Scintillation



- Alpha/beta discriminator was utilized
- No distinction between alpha peaks

Po-210 By Liquid Scintillation (Cont.)

15 **CAK RIDGE** National Laboratory

Open slide master to edit

Bismuth Phosphate Microprecipitation

Switch methods, back to detection by alpha spec!

BiPO₄ Precipitation Procedure

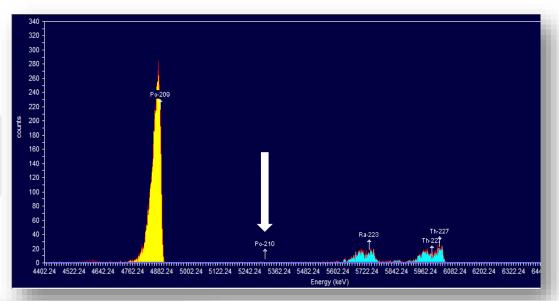
1) 50 μL of $H_2 O_2$

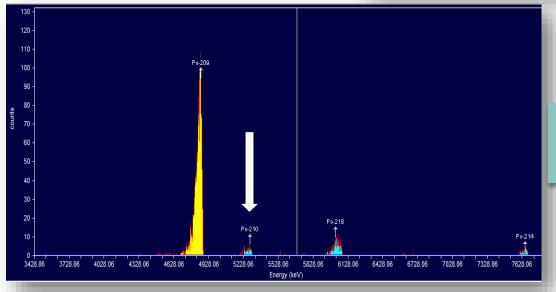
2) 125 µL of bismuth carrier

3) 0.75 mL of (NH₄)₂HPO₄

- 4) 0.6 mL of conc. NH₄OH
- 5) Mix, wait ~30 minutes

6) Collect precipitate on 0.1 µm resolve filter


Po-210 By Alpha Spec: BiPO₄ Microprecipitation


Alpha spectrum of Po-210 post-separation in **Ac-227**

CAK RIDGE

National Laboratory

17

Alpha spectrum of Po-210 post-separation in **Ra-226**

QC Results for Po-210 Method

- RMAL QAP Requirements
 - Tracer: 30-110% yield
 - Internal std: ±
 40% deviation

Sample Type	Tracer	% Tracer Recovery	Average FWHM
Ra-226 (N=15)	Po-209	67 ± 11	53 ± 13
Ac-227 (N=10)	Po-209	61 ± 13	47 ± 6

Sample Type	Internal Std	% Recovery
Ra-226 (N=3)	Po-210	92 ± 6
Ac-227/225 (N=6)	Po-210	88 ± 20

Summary

- Separations using Sr resin were needed to isolate impurities from high activity samples of Ra-226 & Ac-227
- Improved detection methods for Pb-210 and Po-210
- Passed strict qualifications implemented by Bayer
- Procedures were finalized and accepted
 - RMAL-WA-008
 - RMAL-WA-010
 - RMAL-WA-011

Oak Ridge National Laboratory Chemical Sciences Division	Procedure No.	RML-WA-011
Radioactive Materials Analytical Laboratory	Date of Issue	July 2019
WORK AID		
	Revision 2	Page 1 of 9

Subject: RML-WA-011: Measurement of ²¹⁰Po by alpha spectroscopy in solutions containing ²²⁶Ra, ²²⁷Ac and Daughters Prepared by: Haley Hesse

NOTE: This work aid incorporates the modifications implemented under deviation request DR-18-CSD-001 R2.

1.0 PURPOSE

The purpose of this work aid is to list specific steps, volumes, and dilutions to be used in the separation and analysis of 210 Po in 226 Ra, 227 Ac, and daughter solutions submitted for analysis from the Ac-227 Production Project.

2.0 SCOPE

Sample solutions of purified ²²⁶Ra, ²²⁷Ae, and daughters will be submitted from the Ac-227 Production Project to the Radioactive Materials Analytical Laboratory (RMAL) for analysis. Eichrom Sr resin will be used to separate and purify ²¹⁰Po from parent and interfering nuclides. The purified polonium fraction will then be co-precipitated with bismuth phosphate and filtered onto an Eichrom Resolve filter for counting by alpha spectroscopy. See reference 9.6 and 9.7 for further information. This work aid should be used in conjunction with reference 9.1.

