

npo eichrom

A GCI COMPANY

Resolve Filters: New Polyethylene Material

Madeleine Eddy 1 November 2023 RRMC

https://www.eichrom.com/eichrom/applications-notes

💄 🔞 🗖 📕 Applicati	ions Notes - Eichrom Tec 🗙 🕂							0	×
← C ⊡ https://wv	ww.eichrom.com/eichrom/applications	s-notes/			£≡	Ē	*	•••	Ø
eichrom Prot	DUCTS TECHNICAL INFO RESOURC	ES		+1 (630) 963-0320	C	DNTACT] Î	Q
	APPLICATIONS NOTES	235.0 A							-
	AVAILABLE METHODS	Annlication	Notec						<u>s</u> r
	BIBLIOGRAPHY SEARCH	Application	NULU						0
	USER WORKSOPS								
	NEWSLETTER ARCHIVE								
	a								+
	Reference No.	Title	Download						
				-92					
a		All Application Notes 2014-2018	Download >			5			
0 0 1 1						8			
0.00	AN-1401	Rapid Determination of 226Ra in Emergency	Download >			1			
6 6 C									
	AN-1402	Rapid Determination of Sr in Emergency Milk	Download >					*	
		Samples						1	
	ANI 1407	Panid Determination of Cr in EQs Sail Complex	Download N						
https://www.eichrom.com/eichrom/ap	AIN-1405	Rapid Determination of SFIN Sog Soit Samples						1	ŝ
https://www.eicinom.com/eicinom/ap									
	pichrom [®]	uho							
	TECHNOLOGIES	eichrom www.eichrom.cor	n						
A	GCI COMPANY								

Common Recipes for CeF₃ Microprecipitates

Analyte	Matrix	15 mPre-treatment*	Ce(ug)	HF (mL)
Ac	10 mL 0.35 M HNO3	None	100	1.0
Ac	15 mL 2 M HCl	None	100	1.0
Am/Cm	15 mL 4 M HCl	Dilute 2x	50	3.0
Am/Cm	15 mL 0.25 M HCl	None	50	1.0
Am/Cm	20 mL 1 M HCl	None	50	1.0
Np/Pu	10 mL 0.1 M NH4 bioxalate	None	50	1.0
Np/Pu	20 mL 0.1 M HCl – 0.01 M HF – 0.01 M TiCl3	None	50	1.0
Pu	25 mL 0.05 M HNO3 – 0.05 M HF – 0.02 M TiCl3	None	50	1.0
Th	15 mL 9 M HCl	Dilute to 40 mL	40	3.0
U	15 mL 1 M HCl	None	100	1.0
U	10 mL 0.1 M NH4 bioxalate	None	100	1.0
Υ	15 mL 8 M HNO3	Dilute 2x	100	3.0

www.eichrom.com

CeF₃ Microprecipitate Method Overview

2022 Conclusions

New Filter Material

- Polyethylene is a viable replacement for Resolve[®] Filters
- PE performance is equivalent to PP for standard actinide precipitate conditions
- PE does experience slight curling

• Review of RE Precipitate Method

- Precipitate quality is unaffected by different amounts of rare earth (25-200 ug) or HF (1-3 mL) added
- Peroxide is detrimental to high HCI samples
- Finishing with 100% ethanol reduces filter curling
- Finishing/mounting/drying has little impact on spectra quality but does impact handling

5

5

Physical

- Filters not centered on funnel
- Oval-shaped filters
- Wrinkling/ballooning of filters in funnel

Chemical

- High FWHM with tailing for Am/Cm samples
 - Specifically for TRU resin eluents
- High FWHM for Th samples

Kinetic

How long do precipitation reactions need?

2023 Experiments

- Physical Handling
 - Wrinkled/off-center filter performance
 - Filter durability during long-term storage
- Aqueous Phase Chemistry
 - Clean acid vs. column eluent
 - Varied [acid], and acid neutralization
- Precipitation Kinetics
 - Filtration of Am/Cm samples at short time-points

Examples of Distorted Filters

Oval-shaped and wrinkled loose filters

Filters placed offcenter on funnels

www.eichrom.com

Ballooned filter removed from funnel

Resolve Funnels vs. Pall Gelman Funnels

Pall Gelman filter with (L) and without (R) mesh insert

Oval-cut filter on Pall Gelman

Comparison of filter edge width

www.eichrom.com

Physical Handling "Worst Case Scenario" Tests

www.eichrom.com

Experimental Conditions:

- 200 dpm ²⁴³Am, 100 dpm ²⁴¹Am, and ²⁴⁴Cm
- 10 mL 1 M HCI
- 50 ug Ce
- 1 mL conc. HF
- 20 min precipitation time

Relative Percent (%) recoveries of physically handled sample sets vs. control group (center-placed PP fliters)

Sample Set	²⁴³ Am	²⁴¹ Am	²⁴⁴ Cm
PE – off-center	120 ± 20	105 ± 4	102 ± 4
PP – dropped	105 ± 3	105 ± 2	104 ± 4
PE – dropped	104 ± 3	103 ± 2	102 ± 2
PP – Pall Gelman	100 ± 3	98 ± 2	100 ± 3
PE – Pall Gelman	102 ± 5	93 ± 4	95 ± 4
PE – Pall Gelman w/mesh	102 ± 2	98 ± 3	100 ± 2

Durability/Storage Testing

Experimental Conditions:

- 200 dpm ²⁴³Am, 100 dpm ²⁴¹Am, and ²⁴⁴Cm
- 10 mL 1 M HCI
- 50 ug Ce
- 1 mL conc. HF
- 20 min precipitation time

10-52-05 TO

www.eichrom.com

Durability/Storage Testing

Percent Change in Activity for PP Samples

Sample	²⁴³ Am	²⁴¹ Am	²⁴⁴ Cm
Initial Activity (dpm)	348	144	138
Two Weeks	+0.9%	-0.2%	-0.4%
Two Weeks – shaken	-3.9%	-2.7%	-4.0%
Three Months	-5.3%	-5.8%	-6.9%
Six Months	-5.2%	-5.9%	-6.1%
Eight Months	-1.0%	-1.9%	-2.2%

Percent Change in Activity for PE Samples

Sample	²⁴³ Am	²⁴¹ Am	²⁴⁴ Cm
Initial Activity (dpm)	242	141	137
Two Weeks	+0.7%	-1.2%	-0.7%
Two Weeks – shaken	+0.0%	-0.7%	-1.4%
Three Months	+0.5%	-2.7%	-2.9%
Six Months	-1.1%	-2.7%	-2.3%
Eight Months	-1.0%	-2.7%	-2.3%

www.eichrom.com

Durability/Storage Testing

Percent Change in FWHM for PP Samples

Sample	²⁴³ Am	²⁴¹ Am	²⁴⁴ Cm
Initial FWHM (keV)	37.9	39.7	29.9
Two Weeks	+5.4%	+3.4%	+16%
Two Weeks – shaken	+4.8%	+3.0%	+13%
Three Months	+38%	+34%	+82%
Six Months	+16%	+11%	+55%
Eight Months	+16%	+12%	+50%

Percent Change in FWHM for PE Samples

Sample	²⁴³ Am	²⁴¹ Am	²⁴⁴ Cm
Initial FWHM (keV)	39.4	41.1	34.9
Two Weeks	+6.9%	+8.2%	+17%
Two Weeks – shaken	+6.0%	+6.1%	+9.5%
Three Months	+32%	+33%	+67%
Six Months	+14%	+16%	+48%
Eight Months	+15%	+13%	+50%

www.eichrom.com

Physical Handling – Conclusions and Process Changes

www.eichrom.com

Conclusions

- Minimal change in % recovery unless gaps in filter
 - Can identify gaps easily during wetting by "whooshing" of EtOH
- Pall Gelman funnels larger active area – more important to fully center filters
- Minimal activity loss but significant increase in FWHM with long-term storage

Process Changes

- Warning labels
- Less compression to funnel stacks
- Adjust dye cutting pressure/method to reduce jagged edges

Clean Acid vs. Column Eluent

TEVA	UTEVA	TRU	DGA
PC/L/R 30 mL 3 M HNO ₃	PC/L/R 30 mL 3 M HNO ₃	PC/L/R 30 mL 3 M HNO ₃	PC/L/R 30 mL 3 M HNO ₃
Th – 15 mL 9 M HCl	Rinse – 20 mL 5 M HCI/0.05 M oxalic acid	Am – 15 mL 4 M HCl	Rinse – 20 mL 0.25 M HNO ₃
Pu/Np – 15 mL 0.1 M HCl/0.05 M HF/0.01 M TiCl ₃	U – 15 mL 1 M HCl	Rinse – 4 M HCl/0.25 M HF	Am – 0.1 M HCl
		U or Pu/Np – 15 mL 0.1 M ammonium bioxalate	

Clean Acid vs. Column Eluent

100 dpmNp/Pu: TEVA and TRU

TEVA		UTEVA	EVA TRU			DGA	
Th: 15 mL 9 M HCl diluted to 40 mL		U: 15 mL 1 M HCl		Am: 15 mL 4 M HCl diluted to 30 mL		Am: 15 mL 0.1 M HCl	
dpm -6.5%	FWHM +4.1%	dpm -0.4%	FWHM -8.5%	dpm -25%	FWHM -2.2%	dpm -33%	FWHM -5.1%
Pu/Np: 15 mL 0.1 M HCl/0.05 M HF/ 0.01 M TiCl ₃				U: 15 mL 0.1 M ammonium bioxalate			
dpm -8.4%	FWHM -2.8%			dpm -4.7%	FWHM -11%		
				Pu/Np: 15 ammor bioxala	mL 0.1 M nium te		
				dpm +3 1%	FWHM +12%		

Am/Cm Acid Dependence

Experimental Conditions:

- 20 dpm ²⁴³Am, 10 dpm ²⁴¹Am, and ²⁴⁴Cm
- 50 ug Ce
- 1 mL conc. HF
- 20 min precipitation time

Volume (mL)		[HCI] (M))	
15		0.1		
50		1.2		
30		2.0		
15		4.0		
15 + 7.6 mL cor NH ₄ OH	nc	4.0 + 3.9 NH ₄ OH	Μ	
eichrom [.]	npo			
TECHNOLOGIES	eich	irom	www.ei	chrom.com

Am/Cm Acid Dependence

A GCI COMPANY

Am-241 FWHM for PP v PE with varied [HCI] 90 0.1 M HCI 1.2 M HCI 2 M HCI 4 M HCI 4 M HCI + 90 0.1 M HCI 1.2 M HCI 2 M HCI 4 M HCI 4 M HCI + 90 0.1 M HCI 1.2 M HCI 2 M HCI 4 M HCI 4 M HCI + 90 0.1 M HCI 1.2 M HCI 2 M HCI 4 M HCI 4 M HCI + 90 0.1 M HCI 1.2 M HCI 2 M HCI 4 M HCI 4 M HCI + 90 0.1 M HCI 1.2 M HCI 2 M HCI 4 M HCI 4 M HCI + 90 0.1 M HCI 1.2 M HCI 2 M HCI 4 M HCI

Cm-244 FWHM for PP v PE with varied [HCI]

Th Acid Dependence

Experimental Conditions:

- 200 dpm ²³⁰Th ²²⁹Th, and ²²⁸Th
- 40 ug Ce
- 3 mL conc. HF
- 20 min precipitation time

Volume (mL)	[HCI] (M)
30	2
45	3
15	4
15 + 16.9 mL conc NH ₄ OH	9.0 + 8.9 M NH ₄ OH

rom

OGIES

npo

eichrom

Aqueous Phase Chemistry Conclusions

• Acid vs eluent

- No significant difference in yield for acid vs eluent
- Some increase in FWHM for Np/Pu-TRU sample

Am/Cm vs [HCl]

- FWHM PE > FWHM PP
- Significant increase in FWHM with increasing [HCl]
- Neutralizing HCl restores original spectral quality

• Th vs [HCl]

- FWHM PE > FWHM PP
- No significant dependence on [HCl] but PE > PE for all conditions
- Neutralizing HCl greatly improves spectral quality

Short-term Delayed Filtration Test for Am/Cm

Experimental Conditions:

- 200 dpm ²⁴³Am, 100 dpm ²⁴¹Am, and ²⁴⁴Cm
- 10 mL 1 M HCI
- 50 ug Ce
- 1 mL conc. HF
- VARIED precipitation time

Current Work: Investigation of Thicker PE Membrane

Motivation

- Determine if thicker filters are viable alternative to new PE materials
- Hope that the thicker membrane may have fewer physical issues related to curling and shifting in funnels

Experiments

- Perform standard QC to determine product quality
- Test filter curling
- Test Am/Cm sample acid dependence

Long-term Objectives

• If we proceed with this new material, we will monitor customer comments related to filters shifting and ballooning in funnels to determine if we see a decrease in frequency. We hope the thicker material will be sturdier and create a tighter fit in the funnels which will prevent it from slipping during shipping and handling.

23

Questions?

For more information on alpha spectrometry please join Eichrom at ORTEC's Alpha Spectrometry Training Course from October 14-18, 2024, at GEL Laboratories in Charleston, SC

https://www.ortec-online.com/service-and-support/training/alpha-spectrometry

Acid vs Elution Multi-day Test

npo

eichrom

- Conduct mock columns to collect "eluent" samples
- Prepare 10x samples for each acid and eluent solution with tracers
- Add Ce and HF to 5x samples
- Delay precipitation for other 5x samples
- Each day prepare one delayed filtration and delayed precipitation sample for each solution
- Monitor how DPM and FWHM are affected over time

TEVA	UTEVA	TRU	DGA
PC/L/R 30 mL 3 M HNO ₃	PC/L/R 30 mL 3 M HNO ₃	PC/L/R 30 mL 3 M HNO ₃	PC/L/R 30 mL 3 M HNO ₃
Th – 15 mL 9 M HCl	Rinse – 20 mL 5 M HCl/0.05 M oxalic acid	Am – 15 mL 4 M HCl	Rinse – 20 mL 0.25 M HNO ₃
Pu/Np – 15 mL 0.1 M HCl/0.05 M HF/0.01 M TiCl ₃	U – 15 mL 1 M HCl	Rinse – 4 M HCl/0.25 M HF	Am – 0.1 M HCl
		U or Pu/Np – 15 mL 0.1 M ammonium bioxalate	

A GCL COMPANY

www.eichrom.com

Thorium

Uranium

Americium

Neptunium/Plutonium

Kinetics Conclusions

• Short-term

• Activity unaffected, but slight increase in FWHM over time

Multi-day

- No relationship between FWHM and day of filtration/precipitation
- Lower FWHM for Th-TEVA acid samples
- Decrease in activity/yield for U-UTEVA eluent sample over time

www.eichrom.com

- Am-DGA samples lower FWHM than Am-TRU
 - Related to [HCl]

Current Work: Investigation of Thicker PE Membrane

www.eichrom.com

Investigations of Thicker PE Membrane

