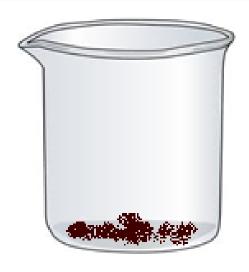


A BRAND OF EICHROM TECHNOLOGIES

Eichrom Method ACS07-VBS U in Soil


Outline

- Steps
 - Dry soil, pulverize, homogenize. Sample aliquot.
 - Add U-232 tracer
 - Ash sample in oven.
 - Digest HNO₃, HCI, HF (HF needed for silicates).
 - Dissolve residue in HNO_3 -Al(NO_3)₃.
 - UTEVA separation.
 - Prepare alpha spectrometry source.

2

- 1) Ash/burn to remove organic material.
 - a) Important to remove organics prior to further treatment.
 - b) Can slow reactions to dissolve inorganic material.
 - c) Could catch fire if using HNO₃/H₂O₂ or other oxidizers.
- 2) Treat inorganic material
 - a) Leach
- Selectively dissolve select elements, leave bulk solids behind
- May not dissolve difficult samples or equilibrate tracer.
- b) Acid/Wet digestion
 - More complete digestion. HF to dissolve silicates.
 - May leave behind refractory or difficult residues.
- c) Fusion
- Complete sample dissolution including refractory components.

Soil in 200 mL Glass Beaker. Dry, weigh, then ash.

- Weigh up to 2 grams of soil in 200 mL glass beaker.
- 2) Heat sample at 110C until dry.
- 3) Cool sample. Weigh. Record dry weight.
- 4) Ash sample overnight at 510C.
- 5) Transfer ashed soil to 125 mL Teflon beaker. Rinse glass beaker with 10 mL conc. HNO₃. Add to Teflon beaker.
- 6) Add 10 mL conc. HNO₃ to Teflon beaker. Cover with watchglass. Heat to near boiling for 3 hours.

Soil in Teflon Beaker. Glass beaker not compatible with HF.

- 7) Transfer liquid and solids to 50 mL centrifuge tube. Rinse with DI water to complete transfer. Dilute to 50 mL with DI water.
- 8) Centrifuge. Decant liquid to clean 125 mL Teflon beaker. Set aside.
- 9) Transfer solids to original 125 mL Teflon beaker. Rinse centrifuge tube with 10 mL conc. HNO₃ to complete transfer. Add 10 mL conc. HNO₃ and 15 mL conc. HF.

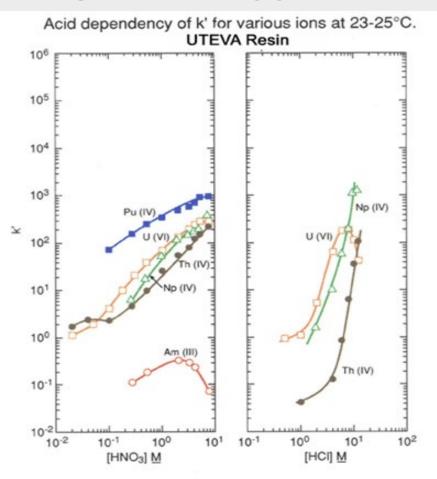
Cover with Teflon lid. Digest on hotplate until solids dissolved. Add more HNO₃-HF if needed.

Soil in Teflon Beaker.
Glass beaker not compatible with HF.

10) Transfer liquid from dissolved solids to 125 mL Teflon beaker containing the liquid fraction.

Evaporate to dryness.

11) Add 5 mL conc. HNO₃. Evaporate to dryness.


12) Add 10 mL 3M $HNO_3 + 1M AI(NO_3)_3$.

13) Transfer to a 50 mL centrifuge tube. Rinse beaker with 5 mL 3M $HNO_3 + 1M Al(NO_3)_3$. Add rinse to centrifuge tube.

Optional: centrifuge to ensure any remaining solids are removed.

Note: Remaining silicates can cause gelling which www.eichwill.clog separation columns/cartridges.

UTEVA Resin

- 14) Precondition UTEVA 5mL 3M HNO₃.
- 15) Load sample onto UTEVA at 1-2 mL/min. UTEVA retains U(VI).
- 16) Rinse sample tube with 5mL 3M HNO₃. Add rinse to UTEVA. Allow liquid to drain.
- 17) Rinse UTEVA with 5mL 3M HNO₃. Allow liquid to drain.
- 18) Rinse UTEVA with 15mL 8M HNO₃. (Additional Po removal. Po-210 overlaps with U-232)
- 19) Rinse UTEVA 15mL 9M HCI. (convert to HCI).
- 20) Rinse UTEVA with 20 mL 5M HCI-0.05M oxalic acid. Removes Th(IV) and any traces of Pu(IV)/Np(IV).
- 21) Place a clean 50 mL centrifuge tube below each UTEVA cartridge. Elute U with 15 mL 1M HCl. (set aside for CeF₃).

Alpha Source Preparation (CeF3)

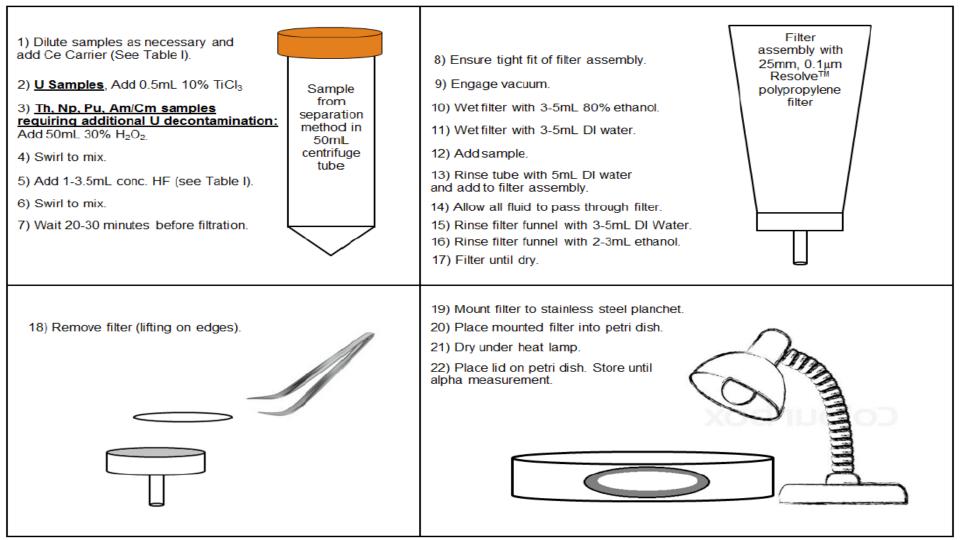
Rapid method with adequate resolution for most analyses.

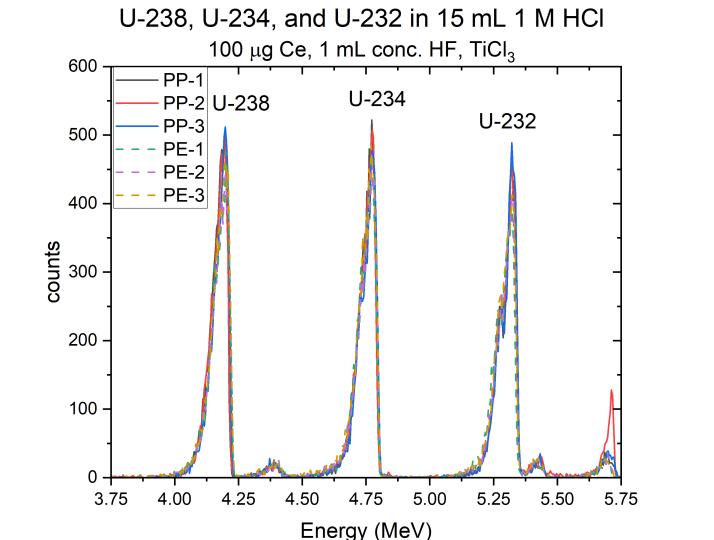
- No evaporations

Add 50-100 ug of Ce

Add TiCl₃ to U samples, U(IV) will carry on CeF₃

Add HF (or NH₄HF) to all samples




Alpha Source Preparation (CeF3)

Typical Performance of CeF₃ Microprecipitation onto Eichrom Resolve Filters

Nuclide	μ g Ce	Matrix	Yield	Resolution (FWHM)
²³⁰ Th	50	30 mL 4.5M HCl	>95%	20-30 keV
^{238/234} U	100	20 mL 1M HCl	>95%	30-40 keV
²³⁹ Pu	50	20 mL 0.1M HCl-0.05MHF-0.01MTiCl ₃	>95%	30-40 keV
²⁴¹ Am	50	15 mL 4M HCl	>95%	22-28 keV

Questions????

