

npo eichrom

A GCI COMPANY

Recovery of nuclear medicine radionuclides in acetate buffer solution

Madeleine Eddy RRMC 2024 Purdue University 21 October 2024

Nuclear medicine

eichrom

"The use of radioactive tracers to diagnose and treat disease"

www.eichrom.com

- Diagnostics and Imaging
 - Single Photon Emission Computed Tomography (SPECT)
 - Positron Emission Tomography (PET)
- Therapy
 - External beam therapy
 - Targeted radionuclide therapy
- Theranostics
 - Matched pair isotopes to treat and image using the same targeting vectors

External Beam

Theranostics – the future

eichrom

- A "best of both worlds" approach
 - Power of radiation therapy
 - Targeting of chemotherapy
- Requires multiple isotopes of the same or similar elements
 - Diagnostics via positron or gamma
 - Therapy via alpha, beta, or auger

https://www.iaea.org/newscenter/news/what-are-radiopharmaceuticals

www.eichrom.com

Patient with extensive metastasis before and after therapy with ²²⁵Ac-PSMA-617 showing complete imaging response.

Theranostics – target to patient

eichrom

Current study – Background

eichrom®

- Existing separations are already done on Eichrom resins for many isotopes
 - SCX for Ga
 - DGA for Ac, REEs
- Recovery of nuclear medicine isotopes in buffer is ideal for labeling
 - Ammonium acetate commonly used
- High specific activity isotopes are more strongly impacted by acidic impurities or cation exchange sites.
 - Need to understand how tracers behave as it may differ from stable metal

radioisotope	chelator (BFC)	standard labeling conditions	bioconjugate	target	molar/specific activity (% RCY)	reference
⁴⁴ Sc	DOTA (DO3A)	0.25-0.5 M NH4OAc pH 4, 95 °C,	BBN[2-14]NH ₂	GRPR	4.8 GBq/µmol (>80)	149
		10-30 min	Tyr ³ -octreotate (TATE)	SSTR	8 GBq/µmol (>95)	108
			PSMA-617	PSMA	6.7 ± 0.8 GBq/µmol (>98)	99
			Z-HER:2891	HER2	7.8 GBq/ μ mol (98 ± 2)	152
			NAP-amide	MC1-R	19 GBq/µmol (60-70)	150
	DOTA (p-SCN-Bn)	0.5 M NaOAc pH 4.5, 90 °C, 15 min	$c(RGD)_2$	integrin $\alpha_s \beta_3$	7.1 GBq/µmol (>90)	148
	AAZTA (CNAAZTA)	0.25 M NH ₄ OAc pH 4, RT, 5 min	c(RGDfK)	integrin $\alpha_{s}\beta_{3}$	0.36 GBq/µmol (99)	142
	CHX-A''-DTPA (p-SCN-Bn)	0.5 M NaOAc pH 4.5, RT, 30 min	Cetuximab Fab	EGFR	63 GBq/ μ mol (66 ± 5)	100
⁴⁷ Sc	DOTA (DO3A)	0.25-0.5 M NH4OAc pH 4, 95 °C,	folate (cm10)	FR	13 GBq/µmol (>96)	102
		10-25 min	NaI ³ -octreotide (NOC)	SSTR	10 GBq/µmol (96.6–99)	101

Table 4. Selected ^{44/47}Sc Radiopharmaceuticals with Targets and Relevant Labeling Parameters^a

Table 6. Selected ^{66/68}Ga Radiopharmaceuticals with Targets and Relevant Labeling Parameters⁴

radioisotope	chelator (BFC)	standard labeling conditions	bioconjugate	target	molar/specific activity (% RCY)	reference
⁶⁶ Ga	NOTA (p-SCN-Bn)	0.25 M NH ₄ OAc pH 7.2, 37 °C, 30 min	TRC-105	CD105	>74-222 GBq/µmol (>80)	691
	DFO	TRIS-buffered saline pH 7.4, 50 °C, 15 min	folate	FR		692
⁶⁸ Ga	DOTA (DO3A)	0.1 M OAc pH 5.5, 100 °C, 10 min	Tyr ³ -octreotate (TATE)	SSTR	185-260 GBq/7-45 mg (64)	693
	HBED (HBED- CC)	NaOAc, pH 4.5, 85 °C, 3 min	PSMA-11	PSMA	$70 \pm 20 \text{ GBq}/\mu \text{mol}$ (86.5 ± 4.1)	244
	PCTA (p-SCN-Bn)	10 mM NaOAc pH 4.5, 30 min, RT	c(RGDyK)	integrin $\alpha_{\eta}\beta_3$	55 GBq/ μ mol (96.2 ± 0.5)	194
	THP (SCN)	0.6 M NH ₄ OAc, pH 6.5, RT, $2-5$ min	c(RGDfK)	integrin $\alpha_{\eta}\beta_3$	60-80 GBq/µmol (>95)	250
	H2dedpa (p-SCN-Bn)	10 mM NaOAc pH 4.5, RT, 10 min	c(RGDyK)	integrin $\alpha_{\eta}\beta_3$	34 GBq/µmol (97)	255
	TRAP	HEPES buffer pH 2, 95 $^\circ\text{C},$ 5 min	(RGD) ₃	integrin $\alpha_{\gamma}\beta_3$	$2009 \pm 61 \text{ GBq}/\mu \text{mol}$ (90.0 ± 2.7)	215

^aFR (folate receptor); SSTR (somatostatin receptor); and PSMA (prostate-specific membrane antigen).

Table 8. Selected ^{86/90}Y Radiopharmaceuticals with Targets and Relevant Labeling Parameters^a

	radioisotope	chelator (BFC)	standard labeling conditions	bioconjugate	target	molar/specific activity (% RCY)	reference
⁸⁶ Y DOTA (DO3A)		DOTA (DO3A)	0.15 M NH ₄ OAc pH 4.5, 100 °C, 15 min	Phe ¹ -Tyr ³ -octreotide (TOC)	SSTR	28 GBq/µmol (>98.5)	372, 374
		DOTA (p-SCN-Bn)	0.2 M NH ₄ OAc pH 5.5–6, 95 °C, 20 min	PSMA peptide "6"	PSMA	>83.9 GBq/µmol (90–95)	376
		CHX-A''-DTPA (p-SCN-Bn)	0.1 M NH ₄ OAc pH 5–6, RT, 30–60 min	Antimindin/RG-1	Mindin/ RG-1	29.6–39.6 MBq/mg (82–96)	378

Alpha Emitting Therapeutics

eichrom

Thorium (227Th) Actinium (²²⁵Ac) IR: 0.94 Å IR: 1.12 Å z/r: 2.68 **Ox: +4** z/r: 4.25 **Ox: +3** ²²⁷Th Largest +3 cation on the High z increases hydrolysis 18.7 d periodic table concern ²²⁵Ac 9.92 d Considered an industry α Parent isotope to ²²³Ra, but relatively long half-life standard for targeted alpha α ²²³Ra therapy Reactor irradiation to produce 11.4 d ²²¹Fr parent ²²⁷Ac Serious supply chain issues due α 4.9 m α to complex production routes One active clinical trial 10 active clinical trials ²¹⁹Rn α 3.96 s ²¹⁷At 32.6 ms α ²¹³Po ²¹¹Po ²¹⁵Po ß α B. 3.7 s 0.516 s 1.78 ms ²¹³Bi ²⁰⁹Bi ²¹¹Bi α Bα Bα α 45.6 m stable 2.14 m ²⁰⁹Pb ²¹¹Pb ²⁰⁷Pb β ß α α 3.23 h 36.1 m stable 209**TI** ²⁰⁷Tl 2.16 m 4.77 m

www.eichrom.com

4.77 m

Positron Emitting Diagnostics

eichrom

Gallium (68Ga)

IR: 0.62 Å

Ox: +3

z/r: 4.83

- One of the smallest +3 cations
- Readily susceptible to hydrolysis
- ⁶⁸Ga was one of the first PET emitters used in imaging
- Readily available via ⁶⁸Ge/⁶⁸Ga generators.
- 81 active clinical trials

Rowe, S.P.; et al. CA Cancer J Clin 72(4), 333-352, (2021). DOI: 10.3322/caac.21713 Pandit-Taskar, N.; et al. Eur J Nucl Med Mol Imaging, 41, 2094-2105 (2014). DOI:10.1007/s00259-014-2830-7

Zirconium (⁸⁹Zr)

Ox: +4

IR: 0.72 Å

z/r: 5.55

- Extremely prone to hydrolysis
- Typically requires a complexing agent
- PET emitter with a long half-life
- Cyclotron production by irradiation of monoisotopic ⁸⁹Y
- 12 active clinical trials

Serial whole-body ⁸⁹Zr-huJ591 scans (MIP images). Images show physiological distribution in cardiac and vascular blood pool, decreasing with time, in liver, spleen, kidneys, and GI tract. Images show increased accumulation in multiple bone lesions, best seen in day 8 image. Many of these lesions are not clearly visualized on ^{99m}Tc MDP scan (*right*) lesions otherwise not detected by CT or FDG scan; in one patient ⁸⁹Zr-huJ591 imaged disease was seen on MRI.

Match Pair Theranostics

Scandium (44Sc / 47Sc)

Ox: +3

IR: 0.75 Å

- Smallest of the +3 Rare Earth Elements
- Susceptible to hydrolysis
- ⁴⁴Sc is a short-lived PET emitter readily available via ⁴⁴Ti/⁴⁴Sc generators.
- ⁴⁷Sc provides low-energy beta treatment

Maximal intensity projection of PET/CT examination of a 77year-old patient suffering of mCRPC with high tumor load using: (A) [⁴⁴Sc]Sc-PSMA-

z/r: 4.03 β⁻

⁴⁷Sc

3.349 d

⁴⁴Ca

stable

⁴⁷Ti

stable

⁴⁴Sc

14.74 h

B⁺

- 617 (50 MBq, 60 min p.i.)
- (B) (B) [⁶⁸Ga]Ga-PSMA-11 (120 MBq, 60 min p.i.).

Shannon Ionic Radii (CN=6)

Trivalent

Yttrium (⁸⁶Y / ⁹⁰Y)

IR: 0.9 Å

Tetravalen

Rare Earth element with low z/r

Ox: +3

- Regenerative ⁹⁰Sr/⁹⁰Y generators
- Accelerator production of ⁸⁶Y
- 79 active clinical trials

The same patient imaged via SPECT with [111In]In-DTPAoctreotide (A = 4 h, C = 24 h) and via PET with [86Y]Y-DOTATOC (B = 4 h, D = 24 h) showing hepatic and para-aortic metastases of a carcinoid tumor.

Khozeimeh Sarbisheh, E., Price, E.W. (2019). The Radiopharmaceutical Chemistry of the Radioisotopes of Lutetium and Yttrium. In: Lewis, J., et al. Radiopharmaceutical Chemistry. Springer, Cham. DOI: 10.1007/978-3-319-98947-1_20

Current study – Experimental Design

Determine minimum volume required for 95% recovery

- QML Column
- 10 mL HCI load
 - 0.05 M HCl for SCX
 - 6 + M HCl for DOODA, DGA, and DGA+DAAP
- 5 mL 1 M NH₄OAc pH = 6 strip
 - Forward direction
- Gravimetric fraction collection
- High specific activity tracers for each isotope
 - Analysis by HPGe or Nal

Elements of Interest				
	Ox State	IR (Å)	z/r	
²²⁵ Ac	+3	1.12	2.6	
²²³ Ra	+2	1.48	1.3	
²²⁷ Th	+4	0.92	4.2	
⁶⁸ Ga	+3	0.62	4.8	
86/90 Y	+3	0.9	3.3	
⁸⁹ Zr	+4	0.72	5.5	
^{44/47} Sc	+3	0.75	4.0	

eichrom

5

SCX

eichrom

- Strong cation exchange resin
- Currently used in Ga generators
- Affinity for metal ions increases with:
 - Charge
 - Charge density (z/r)
- Only resin that extracted Ra
- No recovery of Th, Ga, Zr, or Sc
- Tried increasing acetate solution ionic strength

DOODA

eichrom

- *N,N,N',N'*-tetraoctyl-3,6dioxaoctane diamide
- Large, flexible neutral extractant
- Complete loading of all isotopes except Ra and Y*
 - *Y was loaded on 2ML cartridge
- All isotopes were successfully recovered in acetate
- Limited loading conditions for some low (z/r) isotopes

* 2ML cartridge instead of QML to reduce breakthrough on load

DGA

- *N,N,N',N'*-tetra(R)diglycolamide
 - -R = octyl (DGA-N)
 - R = 2-ethyl-1-hexyl (DGA-B)
- Recovery of Th and Ga in relatively large volume
- Stable Y recovered but not tracer
- Sc maxes out at 94%
- Ac breakthrough on QML, incomplete strip on 2ML
- Breakthrough of Ra
- Extractant may contain ionexchange impurities

95% recovery (mL)					
	DGA-N	DGA-B			
²²⁵ Ac					
²²³ Ra					
²²⁷ Th	3.32	3.94			
⁶⁸ Ga	2.24	2.41			
86/90 Y					
⁸⁹ Zr					
^{44/47} Sc					

DGA + DAAP

- Diamyl-amylphosphonate
- DAAP acts as a masking agent to complex cation exchange sites
- Improves isotope recovery
 - Reduces volume of Th and Ga recovery
 - Successfully recovers Y, Zr, and Sc unlike DGA alone
- Reduction of DGA content by 50%
 - Improves recovery volume
 - Increase Ac breakthrough during loading on 2ML

95% recovery (mL)					
	DGA-N	DGA-B			
	+ DAAP	+ DAAP			
²²⁵ Ac					
²²³ Ra					
²²⁷ Th	0.55	0.53			
⁶⁸ Ga	1.52	0.94			
86/90 Y	0.49	0.81			
⁸⁹ Zr		1.65			
^{44/47} Sc	0.91	0.73			

eichrom

Conclusions

- SCX elution controlled by ionic potential, ionic strength, and hydrolysis reactions
- **DGA** elution dictated by DGAcomplex strength and cationexchange impurities
- Adding DAAP to DGA will mask ion exchange sites allowing for the elution of smaller metal ions
- DOODA is a large, relatively weak extractant allowing for easy stripping of metal ions

95% isotope recovery in 1 M NH₄OAc pH=6 (mL)					
	SCX	DOODA	DGA (N/B)	DGA + DAAP (N/B)	
²²⁵ Ac	0.59	0.81			
²²³ Ra	0.79				
²²⁷ Th		0.59	3.32 / 3.94	0.55 / 0.53	
⁶⁸ Ga		1.97	2.24 / 2.41	1.52 / 0.94	
^{86/90} γ	0.43	2.00*		0.49 / 0.81	
⁸⁹ Zr		1.86		5.00+ / 1.65	
^{44/47} Sc		1.00		0.91 / 0.73	

* 2ML cartridge instead of QML to reduce breakthrough on load

Future work

eichrom

- More isotopes
- More resins
- More buffers
- Write papers

eichrom®

Future work (for real)

- Research and probe acetate complexation and speciation with metals of interest
- Improve our understanding of how hydrolysis impacts recovery
 - Especially for Zr
- Investigate the strength and nature of Y-DGA complexes
- Probe the role of DAAP in improving recovery on DGA resins
- BONUS: understand how rare-earth microprecipitation performs in acetate solutions
 - Could this be the low-acid alternative we have been looking for to improve alpha spec resolution all along???

Questions?

eichrom®