

npo eichrom

A GCI COMPANY

Separation of radio-cerium from simulated irradiated lanthanum targets

Daniel McAlister RRMC 2024 Purdue University 21 October 2024

Introduction

eichrom

Application note AN-1811-10

blue phosphor BaMgAl11017:Eu2+

Introduction

The Separation of Radio-Cerium from Simulated Irradiated Lanthanum Oxide Target tiol R. McAlistort and Madoloine A. Edds Mechanis m WTTC19

Poster WTTC19, August 2024

¹³⁴Ce ($t_{1/2}$ = 3.16 days) decays via electron capture to

¹³⁴La (t_{1/2} = 6.45 minutes) ϵ/β^+

Proposed as the imaging part of a theranostic pair with:

²²⁷Th / ¹³⁴Ce(IV)

Produced by proton irradiation of large La targets

T.A. Bailey, et al. "Developing the ¹³⁴Ce and ¹³⁴La pair as companion positron emission tomography diagnostic isotopes for ²²⁵Ac and ²²⁷Th radiotherapeutics," Nature Chemistry, 13, pp. 284-289 (2021).

eichrom[®]

REE extraction

eichrom

Difficult to separate adjacent REE(III), but Ce(III) can be oxidized to <u>Ce(IV)</u>.

Ce oxidation with bromate

$$BrO_{3}^{-} + 6H^{+} + 5e^{-} \leftrightarrow \frac{1}{2} Br_{2} + 3H_{2}O$$

 $E^{\circ}(V) = 1.482$

$$BrO_{3}^{-} + \underline{6H^{+}} + 6e^{-} \leftrightarrow Br^{-} + 3H_{2}O$$
$$E^{\circ}(V) = 1.423$$

 $Ce^{3+} \leftrightarrow Ce^{4+} + e^{-}$

 $E^{\circ}(V) = -1.72$

NaBrO₃ can be used to oxidize Ce(III) to Ce(IV).

Oxidation proceeds more completely at higher HNO₃ concentrations.

Does not work in HCl.

Byproducts include Br₂ and Br⁻.

P.C. Stevenson and W.E. Nervik, "The radiochemistry of the Rare Earths, Scandium, Yttrium, and Actinium," National Academy of Sciences Nuclear Science Series, NAS-NS 3020 (1961).

Extraction mechanisms

eichrom

 $[Ce(NO_3)_6]^{2-}$ +H ----Q

 $\left[\operatorname{Ce(NO_3)_6}\right]^{2-1}$

Cation Exchange

LN, LN2, LN3

Neutral (Solvating) UTEVA, UTEVA-2, UTEVA-3 Anion exchange 1x8, TEVA

REE extraction

Ce extraction (acidic extractants)

Ce extraction (neutral/solvating extractants)

Ce separation (acidic extractants)

1 g simulated La target

eichrom

Rinse with 6M HNO₃

Recovery in HNO_3/H_2O_2

>92% recovery for LN, LN2, and LN3

Ce separation (acidic extractants)

1 g simulated La target

eichrom

Rinse with 6M HNO₃

Recovery in HNO_3 / ascorbic acid

>94% recovery for LN, LN2, and LN3

Ce separation (neutral/solvating extractants)

Ce separation (neutral/solvating extractants)

1 g simulated La target

eichrom

Rinse with 6M HNO₃

Recovery in HNO₃ / ascorbic acid

>91% recovery for UTEVA-2 and UTEVA-3

Secondary Column

Secondary column of DOODA or DGA resin.

Concentrate Remove reducing agent Change matrix

- Additional purification
- Dilute HCl or buffer for radiolabeling

Flowsheet

eichrom

*HCl inhibits the oxidation of Ce(III) to Ce(IV). If a second separation cycle on LN - DOODA resin will be performed, omit the HCl rinse in the first of DOODA resin in the first cycle.

**After the first separation cycle, Ce can be acidified to 20 mL $6M HNO_3$ -0.1M NaBrO₃ and passed through a second set of LN and DOODA cartridges for additional La target removal. From the second DOODA cartridge, Ce can be recovered in 2 mL of 0.1M HCl or 1.0M sodium or ammonium acetate, pH = 6.0.

Full scale (25g La Target)

Questions???